Immune exhaustion in ME/CFS and long COVID

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID are debilitating multisystemic conditions sharing similarities in immune dysregulation and cellular signaling pathways contributing to the pathophysiology. In this study, immune exhaustion gene expression was investigated in participants with ME/CFS or long COVID concurrently.

RNA was extracted from peripheral blood mononuclear cells isolated from participants with ME/CFS (n = 14), participants with long COVID (n = 15), and healthy controls (n = 18). Participants with ME/CFS were included according to Canadian Consensus Criteria. Participants with long COVID were eligible according to the case definition for “Post COVID-19 Condition” published by the World Health Organization. RNA was analyzed using the NanoString nCounter Immune Exhaustion gene expression panel.

Differential gene expression analysis in ME/CFS revealed downregulated IFN signaling and immunoglobulin genes, and this suggested a state of immune suppression. Pathway analysis implicated dysregulated macrophage activation, cytokine production, and immunodeficiency signaling.

Long COVID samples exhibited dysregulated expression of genes regarding antigen presentation, cytokine signaling, and immune activation. Differentially expressed genes were associated with antigen presentation, B cell development, macrophage activation, and cytokine signaling.

This investigation elucidates the intricate role of both adaptive and innate immune dysregulation underlying ME/CFS and long COVID, emphasizing the potential importance of immune exhaustion in disease progression.

Source: Natalie Eaton-Fitch, Penny Rudd, Teagan Er, Livia Hool, Lara Herrero, and Sonya Marshall-Gradisnik. Immune exhaustion in ME/CFS and long COVID. JCI Insight. 2024;9(20):e183810. https://doi.org/10.1172/jci.insight.183810. https://insight.jci.org/articles/view/183810 (Full text)

Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses

Abstract:

(1) Background: Macrophagic myofasciitis (MMF) is an inflammatory histopathological lesion demonstrating long-term biopersistence of vaccine-derived aluminum adjuvants within muscular phagocytic cells. Affected patients suffer from widespread myalgia and severe fatigue consistent with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a poorly understood disorder suspected to result from chronic immune stimulation by infectious and inorganic particles.

(2) Methods: In this study we determined the immuno-metabolic properties of MMF phagocytic cells compared to controls, at rest and upon exposure to aluminum oxyhydroxide adjuvant, with or without adsorbed antigens, using protein quantification and an oxygen consumption assay.

(3) Results: MMF and control cells similarly internalized the adjuvant and vaccine but MMF cells specifically expressed Rubicon and Nox2, two molecules unique to the LC3-associated phagocytosis (LAP) machinery, a non-canonical autophagic pathway able to downregulate canonical autophagy. MMF cells exhibited an altered inflammatory secretome, producing more pain-inducing CXC chemokines and less TNF-α than controls, consistent with chronic myalgia and exhaustion of the immune system previously documented in ME/CFS. MMF cells exhibited mitochondrial metabolism dysfunction, with exacerbated reaction to adjuvanted vaccine, contrasting with limited spare respiratory capacity and marked proton leak weakening energy production.

(4) Conclusions: MMF phagocytes seemingly use LAP to handle aluminum oxyhydroxide vaccine particles, secrete pain-inducing molecules, and exhibit exacerbated metabolic reaction to the vaccine with limited capacity to respond to ongoing energetic requests.

Source: Masson JD, Badran G, Gherardi RK, Authier FJ, Crépeaux G. Widespread Myalgia and Chronic Fatigue: Phagocytes from Macrophagic Myofasciitis Patients Exposed to Aluminum Oxyhydroxide-Adjuvanted Vaccine Exhibit Specific Inflammatory, Autophagic, and Mitochondrial Responses. Toxics. 2024 Jul 4;12(7):491. doi: 10.3390/toxics12070491. PMID: 39058143. https://www.mdpi.com/2305-6304/12/7/491 (Full text)

Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis

Abstract:

Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances.

A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology.

It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress.

Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.

Source: Manuel Ruiz-Pablos, Bruno Paiva, Aintzane Zabaleta. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front. Immunol., 08 July 2024, Sec. Viral Immunology, Volume 15 – 2024 | https://doi.org/10.3389/fimmu.2024.1422940 https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1422940/full (Full text)

Systems-level temporal immune-metabolic profile in Crimean-Congo hemorrhagic fever virus infection

Abstract:

Crimean-Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one of the epidemic-prone diseases prioritized by the World Health Organisation as public health emergency with an urgent need for accelerated research. The trajectory of host response against CCHFV is multifarious and remains unknown. Here, we reported the temporal spectrum of pathogenesis following the CCHFV infection using genome-wide blood transcriptomics analysis followed by advanced systems biology analysis, temporal immune-pathogenic alterations, and context-specific progressive and postinfection genome-scale metabolic models (GSMM) on samples collected during the acute (T0), early convalescent (T1), and convalescent-phase (T2).

The interplay between the retinoic acid-inducible gene-I-like/nucleotide-binding oligomerization domain-like receptor and tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic acid cycle during CCHFV infection, compared to the noninfected healthy control and between the severity groups, indicated an increased energy demand and cellular stress. The upregulation of glycolysis and pyruvate metabolism potentiated energy generation through alternative pathways associated with the severity of the infection.

The downregulation of metabolic processes at the convalescent phase identified by blood cell transcriptomics and single-cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ monocytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery due to hyperactivity during the acute phase leading to post-viral fatigue syndrome.

Source: Ambikan AT, Elaldi N, Svensson-Akusjärvi S, Bagci B, Pektas AN, Hewson R, Bagci G, Arasli M, Appelberg S, Mardinoglu A, Sood V, Végvári Á, Benfeitas R, Gupta S, Cetin I, Mirazimi A, Neogi U. Systems-level temporal immune-metabolic profile in Crimean-Congo hemorrhagic fever virus infection. Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2304722120. doi: 10.1073/pnas.2304722120. Epub 2023 Sep 5. PMID: 37669378; PMCID: PMC10500270. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500270/ (Full text)

Sex differences in symptomatology and immune profiles of Long COVID

Abstract:

Strong sex differences in the frequencies and manifestations of Long COVID (LC) have been reported with females significantly more likely than males to present with LC after acute SARS-CoV-2 infection1-7. However, whether immunological traits underlying LC differ between sexes, and whether such differences explain the differential manifestations of LC symptomology is currently unknown.

Here, we performed sex-based multi-dimensional immune-endocrine profiling of 165 individuals8 with and without LC in an exploratory, cross-sectional study to identify key immunological traits underlying biological sex differences in LC.

We found that female and male participants with LC experienced different sets of symptoms, and distinct patterns of organ system involvement, with female participants suffering from a higher symptom burden. Machine learning approaches identified differential sets of immune features that characterized LC in females and males. Males with LC had decreased frequencies of monocyte and DC populations, elevated NK cells, and plasma cytokines including IL-8 and TGF-β-family members.

Females with LC had increased frequencies of exhausted T cells, cytokine-secreting T cells, higher antibody reactivity to latent herpes viruses including EBV, HSV-2, and CMV, and lower testosterone levels than their control female counterparts. Testosterone levels were significantly associated with lower symptom burden in LC participants over sex designation.

These findings suggest distinct immunological processes of LC in females and males and illuminate the crucial role of immune-endocrine dysregulation in sex-specific pathology.

Source: Julio Silva, Takehiro Takahashi, Jamie Wood, Peiwen Lu, Sasha Tabachnikova, Jeffrey Gehlhausen, Kerrie Greene, Bornali Bhattacharjee, Valter Silva Monteiro, Carolina Lucas, Rahul Dhodapkar, Laura Tabacof, Mario Pena-Hernandez, Kathy Kamath, Tianyang Mao, Dayna Mccarthy, Ruslan Medzhitov, David van Dijk, Harlan Krumholz, Leying Guan, David Putrino, Akiko Iwasaki. Sex differences in symptomatology and immune profiles of Long COVID. medRxiv 2024.02.29.24303568; doi: https://doi.org/10.1101/2024.02.29.24303568 https://www.medrxiv.org/content/10.1101/2024.02.29.24303568v1 (Full study available as PDF file)

Immune cell exhaustion, dysfunction, and metabolism in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract;
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic and incapacitating multisystem condition with unknown etiology, no cure, and no FDA- approved treatments, all of which can be attributed to historical underfunding, widespread misinformation, and the complexity of the disease. Many patients encounter several immune-related symptoms, extreme fatigue, post-exertional malaise, and a flu-like onset. Studies have documented changes in ME/CFS immune cell populations and decreased natural killer (NK) cell performance, along with aberrant cytokine production, reduced glycolysis in T cells, and altered metabolites relevant to fatty acid oxidation, implicating potential intracellular metabolic dysregulation.
This knowledge prompted me to investigate fatty acid oxidation and immune cell functional states in isolated ME/CFS lymphocytes. Using extracellular flux analysis and flow cytometry, I observed elevated fatty acid oxidation levels in ME/CFS immune cells, including NK cells, CD4+ memory cells, CD4+ effector cells, CD8+ naïve cells, and CD8+ memory cells compared to healthy controls, particularly during high energy demands and activation. My findings suggest a metabolic dysfunction in ME/CFS immune cells, consistent with T cell exhaustion – a state that hinders immune cell proliferation, survival, and cytokine production following persistent antigen stimulation.
Building upon these results, I further investigated immune cell exhaustion and dysfunction in isolated CD8+ and CD4+ T cells from ME/CFS and healthy samples. I analyzed T cell sub-populations, including naïve, effector, memory, regulatory, and helper T cells, for frequencies of inhibitory receptors and transcription factors associated with dysfunctional immune cell states.
I detected distinct transcription factor dynamics and elevated exhausted T cell phenotype proportions in ME/CFS CD8+ T cell populations compared to healthy controls. In ME/CFS CD4+ T cells, I also observed altered inhibitory receptor population frequencies compared to healthy control samples. Moreover, dysfunctional T cell features correlated with ME/CFS health status and symptom presentation.
Overall, my findings detect dysfunctional T cell states in specific ME/CFS cell populations, which can lead to reduced effector function that may contribute to ME/CFS symptom presentation. This work highlights the significance of assessing both metabolic components and immune cell dysfunction-associated targets in the development of potential therapeutic interventions for individuals with ME/CFS.
Source: Maya, Jessica. Immune cell exhaustion, dysfunction, and metabolism in myalgic encephalomyelitis/chronic fatigue syndrome. Cornell Theses and Dissertations. 2024. https://ecommons.cornell.edu/items/242f8723-6f87-47cc-b36d-bf51a21f4255

Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity

Abstract:

Background: Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs).

Methods: Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge.

Results: We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts.

Conclusion: Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.

Source: Berentschot Julia C., Drexhage Hemmo A., Aynekulu Mersha Daniel G., Wijkhuijs Annemarie J. M., GeurtsvanKessel Corine H., Koopmans Marion P. G., Voermans Jolanda J. C., Hendriks Rudi W., Nagtzaam Nicole M. A., de Bie Maaike, Heijenbrok-Kal Majanka H., Bek L. Martine, Ribbers Gerard M., van den Berg-Emons Rita J. G., Aerts Joachim G. J. V., Dik Willem A., Hellemons Merel E. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Frontiers in Immunology, vol 14, 2023. DOI=10.3389/fimmu.2023.1254899 ISSN=1664-3224 https://www.frontiersin.org/articles/10.3389/fimmu.2023.1254899/full (Full text)

 

Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID?

Abstract:

Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies.

Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with “weak” EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity.

Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with “weak” HLA-II haplotypes against this virus and/or EBV.

Source: Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med. 2023 Sep 17;21(1):633. doi: 10.1186/s12967-023-04515-7. PMID: 37718435. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04515-7 (Full text)

Thromboembolism in the Complications of Long COVID-19

Abstract:

SARS-CoV-2 is a +ssRNA helical coronavirus responsible for the global pandemic caused by coronavirus disease 19 (COVID-19). Classical clinical symptoms from primary COVID-19 when symptomatic include cough, fever, pneumonia or even ARDS; however, they are limited primarily to the respiratory system. Long-COVID-19 sequalae is responsible for many pathologies in almost every organ system and may be present in up to 30% of patients who have developed COVID-19.

Our review focuses on how long-COVID-19 (3 -24 weeks after primary symptoms) may lead to an increased risk for stroke and thromboembolism. Patients who were found to be primarily at risk for thrombotic events included critically ill and immunocompromised patients. Additional risk factors for thromboembolism and stroke included diabetes, hypertension, respiratory and cardiovascular disease, and obesity.

The etiology of how long-COVID-19 leads to a hypercoagulable state are yet to be definitively elucidated. However, anti-phospholipid antibodies and elevated D-dimer are present in many patients who develop thromboembolism. In addition, chronic upregulation and exhaustion of the immune system may lead to a pro-inflammatory and hypercoagulable state, increasing the likelihood for induction of thromboembolism or stroke. ‘

This article provides an up-to-date review on the proposed etiologies for thromboembolism and stroke in patients with long-COVID-19 and to assist health care providers in examining patients who may be at a higher risk for developing these pathologies.

Source: Leilani A Lopes, Devendra K Agrawal. Thromboembolism in the Complications of Long COVID-19. Cardiology and Cardiovascular
Medicine. 7 (2023): 123-128. https://fortunepublish.com/articles/10.26502.fccm.92920317.pdf (Full text)

Unique immune and inflammatory cytokine profiles may define long COVID syndrome

Abstract:

Purpose: Long COVID is estimated to occur in 5-10% of individuals after acute SARS-CoV-2 infection. However, the pathophysiology driving the disease process is poorly understood.

Methods: We evaluated urine and plasma inflammatory and immune cytokine profiles in 33 individuals with long COVID compared to 33 who were asymptomatic and recovered, and 34 without prior infection.

Results: Mean urinary leukotriene E4 was significantly elevated among individuals with long COVID compared to asymptomatic and recovered individuals (mean difference 774.2 pg/mL; SD 335.7) and individuals without prior SARS-CoV-2 infection (mean difference 503.1 pg/ml; SD 467.7). Plasma chemokine ligand 6 levels were elevated among individuals with long COVID compared to individuals with no prior SARS-CoV-2 infection (mean difference 0.59 units; SD 0.42). We found no significant difference in angiotensin-converting enzyme 2 antibody levels. Plasma tumor necrosis factor receptor-associated factor 2 (TRAF2) levels were reduced among individuals with long COVID compared to individuals who were asymptomatic and recovered (mean difference = 0.6 units, SD 0.46). Similarly, the mean level of Sarcoma Homology 2-B adapter protein 3 was 3.3 units (SD 1.24) among individuals with long COVID, lower than 4.2 units (SD 1.1) among individuals with recovered, asymptomatic COVID.

Conclusion: Our findings suggest that further studies should be conducted to evaluate the role of leukotriene E4 as a potential biomarker for a diagnostic test. Furthermore, based on reductions in TRAF2, long COVID may be driven in part by impaired TRAF2-dependent immune-mediated inflammation and potentially immune exhaustion.

Source: Allan-Blitz LT, Akbari O, Kojima N, Saavedra E, Chellamuthu P, Denny N, MacMullan MA, Hess V, Shacreaw M, Brobeck M, Turner F, Slepnev VI, Ibrayeva A, Klausner JD. Unique immune and inflammatory cytokine profiles may define long COVID syndrome. Clin Exp Med. 2023 Apr 16:1–6. doi: 10.1007/s10238-023-01065-6. Epub ahead of print. PMID: 37061998; PMCID: PMC10105906. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105906/ (Full text)