Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression

Abstract:

Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection and compared them with influenza A virus (IAV) and mock infections.

Histopathological and bulk RNA sequencing analyses of leg muscles derived from infected animals at days 3, 30, and 60 post-infection showed no direct viral invasion but myofiber atrophy in the SARS-CoV-2 group, which was accompanied by persistent downregulation of the genes related to myofibers, ribosomal proteins, fatty acid β-oxidation, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation complexes.

While both SARS-CoV-2 and IAV infections induced acute and transient type I and II interferon responses in muscle, only the SARS-CoV-2 infection upregulated TNF-α/NF-κB but not IL-6 signaling in muscle. Treatment of C2C12 myotubes, a skeletal muscle cell line, with combined IFN-γ and TNF-α but not with IFN-γ or TNF-α alone markedly impaired mitochondrial function.

We conclude that a respiratory SARS-CoV-2 infection can cause myofiber atrophy and persistent energy metabolism suppression without direct viral invasion. The effects may be induced by the combined systemic interferon and TNF-α responses at the acute phase and may contribute to post-COVID-19 persistent muscle fatigue.

Source: Homma ST, Wang X, Frere JJ, Gower AC, Zhou J, Lim JK, tenOever BR, Zhou L. Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression. Biomedicines. 2024 Jun 28;12(7):1443. doi: 10.3390/biomedicines12071443. PMID: 39062017; PMCID: PMC11275164. https://pmc.ncbi.nlm.nih.gov/articles/PMC11275164/ (Full text)

Inhibition of HIF-2α Pathway as a Potential Therapeutic Strategy for Endothelial Dysfunction in Post-COVID Syndrome

Abstract:

Background SARS-CoV-2 infection may lead to Post-COVID Syndrome (PCS), characterized by debilitating symptoms like persistent fatigue, cardiovascular symptoms, and cognitive dysfunction. Persistent endothelial dysfunction (ED) is a potential driver of ongoing symptoms. Yet, the underlying biological mechanisms remain unclear.

Methods In this prospective observational study, we characterized 41 PCS patients and 24 healthy controls (HC, matched out of n = 204, recruited before the pandemic) and investigated the effect of SARS-CoV-2 Spike protein 1 (S1) and plasma from PCS patients on human retinal endothelial cells (HREC).

Results Plasma samples from PCS patients exhibited significantly elevated erythropoietin, VEGF and MCP-1 alongside decreased IL-6 levels compared to HC. Low Haemoglobin and Haematocrit were negatively associated with PCS severity. VEGF levels were positively correlated with Anti-S1 IgG levels in patients and upregulated on mRNA level in HREC exposed to S1. Additionally, S1 exposure promoted ROS production and transiently activated HIF-1α in HREC. Persistent activation of HIF-2α by S1 led to disrupted endothelial integrity. HREC exposed to plasma from severely affected PCS patients showed increased ROS and compromised barrier function. Treatment with Belzutifan, a HIF-2α inhibitor, restored barrier integrity in HREC exposed to S1 or PCS-plasma.

Conclusion These findings suggest that HIF-2α-mediated ED in PCS might be a potential therapeutical target for Belzutifan.

Trial registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT05635552

What Is Known?

  • Endothelial dysfunction (ED) is a consequence of acute SARS-CoV-2 infection and may lead to Post-COVID syndrome (PCS) symptoms.

  • Patients with PCS show elevated inflammation and endothelial dysfunction markers.

  • Spike proteins can persist for up to 12 months post-infection, driving ongoing inflammation and immune activation.

What New Information Does This Article Contribute?

  • Low haemoglobin (Hb) and high VEGF correlate with higher Anti-S1 IgG and low Hb is associated with higher C19-YRS severity score.

  • PCS patients exhibit higher Erythropoietin (EPO) levels when compared to HC.

  • Spike protein 1 (S1) alone and PCS patient’s plasma induce endothelial dysfunction primarily through HIF-2α activation.

  • Both S1 and PCS plasma cause oxidative stress and disrupting endothelial integrity.

  • Inhibition of HIF-2α effectively restores endothelial barrier integrity disrupted by S1 and PCS plasma.

What New Information Does This Article Contribute? Persistent circulation of spike proteins can sustain chronic inflammation and immune activation in patients with PCS. Here we show that plasma from PCS patients exhibits significantly elevated levels of VEGF which positively correlates with Anti-S1 IgG. Low haemoglobin was associated with higher Anti-S1 IgG titres and correlated with a higher C19-YRS severity score. Levels of EPO were higher in PCS patients, with a more pronounced effect observed in patients with cardiovascular symptoms. In human retinal endothelial cells, both S1 and plasma from PCS patients primarily induce ED through HIF-2α activation, rather than NF-κB. Both factors lead to significant oxidative stress, evidenced by increased ROS production which in turn disrupts endothelial barrier integrity and function. Notably, Belzutifan, a HIF-2α inhibitor, can restore this compromised endothelial function, offering a potential therapeutic target for PCS.

Source: Andrea Ribeiro, Timon Kuchler, Maciej Lech, Javier Carbajo-Lozoya, Kristina Adorjan, Hans Christian Stubbe, Martina Seifert, Anna Wöhnle, Veronika Kesseler, Johanna Negele, Uwe Heemann, Christoph Schmaderer. Inhibition of HIF-2α Pathway as a Potential Therapeutic Strategy for Endothelial Dysfunction in Post-COVID Syndrome medRxiv 2024.09.10.24313403; doi: https://doi.org/10.1101/2024.09.10.24313403 https://www.medrxiv.org/content/10.1101/2024.09.10.24313403v1.full-text (Full text)

Impact of age and sex on neuroinflammation following SARS-CoV-2 infection in a murine model

Abstract:

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is known to infect people of all ages and both sexes. Senior populations have the greatest risk of severe COVID-19, and sexual dimorphism in clinical outcomes has been reported. Neurological symptoms are widely observed in COVID-19 patients, with many survivors exhibiting persistent neurological and cognitive impairment. The present study aims to investigate the impact of age and sex on the neuroinflammatory response to SARS-CoV-2 infection using a mouse model. Wild-type C57BL/6J mice were intranasally inoculated with SARS-CoV-2 lineage B.1.351, a variant known to infect mice.

Older male mice exhibited a significantly greater weight loss and higher viral loads in the lung at 3 days post infection. Notably, no viral RNA was detected in the brains of infected mice. Nevertheless, expression of IL-6, TNF-α, and CCL-2 in the lung and brain increased with viral infection. RNA-seq transcriptomic analysis of brains showed that SARS-CoV-2 infection caused significant changes in gene expression profiles, implicating innate immunity, defense response to virus, and cerebrovascular and neuronal functions.

These findings demonstrate that SARS-CoV-2 infection triggers a neuroinflammatory response, despite the lack of detectable virus in the brain. Aberrant activation of innate immune response, disruption of blood-brain barrier and endothelial cell integrity, and suppression of neuronal activity and axonogenesis underlie the impact of SARS-CoV-2 infection on the brain. Understanding the role of these affected pathways in SARS-CoV-2 pathogenesis helps identify appropriate points of therapeutic interventions to alleviate neurological dysfunction observed during COVID-19.

Source: Krishna VD, Chang A, Korthas H, Var SR, Low WC, Li L, Cheeran MC. Impact of age and sex on neuroinflammation following SARS-CoV-2 infection in a murine model. bioRxiv [Preprint]. 2023 Aug 14:2023.08.11.552998. doi: 10.1101/2023.08.11.552998. Update in: Front Microbiol. 2024 Jul 15;15:1404312. doi: 10.3389/fmicb.2024.1404312. PMID: 37645925; PMCID: PMC10462071. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462071/ (Full text)

Fibroblast growth factor receptor inhibitors mitigate the neuropathogenicity of Borrelia burgdorferi or its remnants ex vivo

Abstract:

In previous studies, we showed that fibroblast growth factor receptors (FGFRs) contribute to inflammatory mediator output from primary rhesus microglia in response to live Borrelia burgdorferi. We also demonstrated that non-viable B. burgdorferi can be as pathogenic as live bacteria, if not more so, in both CNS and PNS tissues.

In this study we assessed the effect of live and non-viable B. burgdorferi in inducing FGFR expression from rhesus frontal cortex (FC) and dorsal root ganglion (DRG) tissue explants as well as their neuronal/astrocyte localization. Specific FGFR inhibitors were also tested for their ability to attenuate inflammatory output and apoptosis in response to either live or non-viable organisms.

Results show that in the FC, FGFR2 was the most abundantly expressed receptor followed by FGFR3 and FGFR1. Non-viable B. burgdorferi significantly upregulated FGFR3 more often than live bacteria, while the latter had a similar effect on FGFR1, although both treatments did affect the expressions of both receptors. FGFR2 was the least modulated in the FC tissues by the two treatments. FGFR1 expression was more prevalent in astrocytes while FGFR2 and FGFR3 showed higher expression in neurons.

In the DRG, all three receptor expressions were also seen, but could not be distinguished from medium controls by immunofluorescence. Inhibition of FGFR1 by PD166866 downregulated both inflammation and apoptosis in both FC and DRG in response to either treatment in all the tissues tested.

Inhibition of FGFR1-3 by AZD4547 similarly downregulated both inflammation and apoptosis in both FC and DRG in response to live bacteria, while with sonicated remnants, this effect was seen in one of the two FC tissues and 2 of 3 DRG tissues tested. CCL2 and IL-6 were the most downregulated mediators in the FC, while in the DRG it was CXCL8 and IL-6 in response to FGFR inhibition. Downregulation of at least two of these three mediators was observed to downregulate apoptosis levels in general.

We show here that FGFR inhibition can be an effective anti-inflammatory treatment in antibiotic refractive neurological Lyme. Alternatively, two biologics may be needed to effectively curb neuroinflammation and pathology in the CNS and PNS.

Source: Parthasarathy G. Fibroblast growth factor receptor inhibitors mitigate the neuropathogenicity of Borrelia burgdorferi or its remnants ex vivo. Front Immunol. 2024 Apr 4;15:1327416. doi: 10.3389/fimmu.2024.1327416. PMID: 38638441; PMCID: PMC11024320. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024320/ (Full study)

The demographic, laboratory and genetic factors associated with long Covid-19 syndrome: a case–control study

Abstract:

Long Covid-19 syndrome (LCS) manifests with a wide range of clinical symptoms, yet the factors associated with LCS remain poorly understood. The current study aimed to investigate the relationships that demographic characteristics, clinical history, laboratory indicators, and the frequency of HLA-I alleles have with the likelihood of developing LCS.

We extracted the demographic characteristics and clinical histories from the medical records of 88 LCS cases (LCS+ group) and 96 individuals without LCS (LCS group). Furthermore, we evaluated the clinical symptoms, serum levels of interleukin (IL)-6 and tumor necrosis factor-α, laboratory parameters, and the frequencies of HLA-I alleles.

Following this we used multiple logistic regression to investigate the association these variables had with LCS. Subjects in the LCS+ group were more likely to have experienced severe Covid-19 symptoms and had higher body mass index (BMI), white blood cell, lymphocyte counts, C-reactive protein (CRP), and IL-6 levels than those in the LCS group (for all: P < 0.05).

Moreover, the frequencies of the HLA-A*11, -B*14, -B*38, -B*50, and -C*07 alleles were higher in the LCS+ group (for all: P < 0.05). After adjusting for the most important variables, the likelihood of suffering from LCS was significantly associated with BMI, CRP, IL-6, the HLA-A*11, and -C*07 alleles, as well as a positive history of severe Covid-19 (for all: P < 0.05).

Our study showed that a history of severe Covid-19 during the acute phase of the disease, the HLA-A*11, and -C*07 alleles, higher BMI, as well as elevated serum CRP and IL-6 levels, were all associated with an increased likelihood of LCS.

Source: Torki, E., Hoseininasab, F., Moradi, M. et al. The demographic, laboratory and genetic factors associated with long Covid-19 syndrome: a case–control study. Clin Exp Med 24, 1 (2024). https://doi.org/10.1007/s10238-023-01256-1 https://link.springer.com/article/10.1007/s10238-023-01256-1 (Full text)

Electroencephalographic Abnormalities in a Patient Suffering from Long-Term Neuropsychological Complications following SARS-CoV-2 Infection

Abstract:

Introduction: Emotional apathy has recently been identified as a common symptom of long COVID. While recent meta-analyses have demonstrated generalized EEG slowing with the emergence of delta rhythms in patients hospitalized for severe SARS-CoV-2 infection, no EEG study or dopamine transporter scintigraphy (DaTSCAN) has been performed in patients with long COVID presenting with apathy. The objective of this case report was to explore the pathophysiology of neuropsychological symptoms in long COVID.

Case presentation: A 47-year-old patient who developed a long COVID with prominent apathy following an initially clinically mild SARS-CoV-2 infection underwent neuropsychological assessment, cerebral MRI, DaTSCAN, and resting-state high-density EEG 7 months after SARS-CoV-2 infection. The EEG data were compared to those of 21 healthy participants. The patient presented with apathy, cognitive difficulties with dysexecutive syndrome, moderate attentional and verbal episodic memory disturbances, and resolution of premorbid mild gaming disorder, mild mood disturbances, and sleep disturbances. His MRI and DaTSCAN were unremarkable. EEG revealed a complex pattern of oscillatory abnormalities compared to the control group, with a strong increase in whole-scalp delta and beta band activity, as well as a decrease in alpha band activity. Overall, these effects were more prominent in the frontal-central-temporal region.

Conclusion: These results suggest widespread changes in EEG oscillatory patterns in a patient with long COVID characterized by neuropsychological complications with prominent apathy. Despite the inherent limitations of a case report, these results suggest dysfunction in the cortical networks involved in motivation and emotion.

Source: Benis D, Voruz P, Chiuve SC, Garibotto V, Assal F, Krack P, Péron J, Fleury V. Electroencephalographic Abnormalities in a Patient Suffering from Long-Term Neuropsychological Complications following SARS-CoV-2 Infection. Case Rep Neurol. 2023 Dec 5;16(1):6-17. doi: 10.1159/000535241. PMID: 38179211; PMCID: PMC10764086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764086/ (Full text)

Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach

Abstract:

The dermatological manifestations of Long Covid (LC) have languished in the shadows of chronic fatigue and brain fog. Yet they are all linked by gut dysbiosis and the cytokine triad of TNF-α, IL-1β, and IL-6. The gut microbiome common not only to LC, psoriasis, AA, and vitiligo but also to neurodegenerative disease has been recently described. This gut microbiome induces an altered tryptophan metabolism linked to autoimmune disease. SARS CoV2 invades enterochromaffin cells rich in ACE2 receptors and curtails absorption of the essential amino acid tryptophan and subsequent synthesis of serotonin and melatonin.

This review suggests that an etiologic prebiotic (d-mannose)/probiotic (lactobacilli, bifidobacteria)/postbiotic (butyrate) approach to autoimmune skin disease that improves intestinal barrier integrity and that suppresses the triad of TNF-α, IL-6, and IL-1β may enhance or even eliminate the traditional immunotherapy of targeted monoclonal antibodies, Janus kinase inhibitors, and steroids. Health benefits of this approach extend well beyond suppression of autoimmune skin disease.

Source: Chambers, P.W.; Chambers, S.E. Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach. Preprints 2023, 2023121881. https://doi.org/10.20944/preprints202312.1881.v2 https://www.preprints.org/manuscript/202312.1881/v2 (Full text available as PDF file)

Long-COVID-19: the persisting imprint of SARS-CoV-2 infections on the innate immune system

In a recent Cell publication, Cheong et al. uncover how COVID-19 causes IL-6 induced epigenetic reprogramming of human immune stem cells, which causes lasting alterations in the composition and response characteristics of circulating immune cells.1 The study provides important insights into the mechanisms by which SARS-CoV-2 infections impact the human immune system and is an important hook into unraveling the mechanisms of post-acute sequelae of COVID-19 (PASC) commonly referred to as long-COVID.

While vaccination and drugs are reducing the societal impact of acute SARS-CoV-2 infections, between 10 and 40% of patients continue to suffer long after the acute infection has been cleared. The diverse PASC symptoms range from short breath and headaches to cognitive impairment (‘brain fog’) and debilitating fatigue. Not only are no treatments for PASC available but also the underlying molecular mechanisms remain opaque.2

Cheong et al. investigated in patients’ circulating immune cells if detectable changes persisted after clearance of the acute SARS-CoV-2 infection 3 weeks after the first symptoms. They assembled a cohort of COVID-19 convalescent patients, which was sampled between 1–3 and 4–12 months after SARS-CoV-2 infections requiring intensive care unit (ICU) admission and compared these patients to non-infected controls and to patients that had been on the ICU for different reasons. Focusing on peripheral blood mononuclear cells (PBMC) they investigated transcriptional or epigenetic changes using an integrated pipeline of single-nuclei transcriptome analysis and ATAC-seq sequencing, which identifies accessible chromatin regions. Among PBMCs CD14+ monocytes exhibited the most drastic changes. CD14+ monocytes are a group of heterogenous, short-lived antigen presenting cells that help orchestrating immune responses. Among these the authors could distinguish one cluster, M.SC3, which was more abundant even 12 months after the infection. Cells in this cluster resembled intermediate-type monocytes with functions that altogether resemble dendritic cells, the most effective amongst professional antigen presenting cells. In response to stimuli indicating viral infections, post-COVID monocytes showed up to 100-fold increased secretion of proinflammatory cytokines and enhanced transcriptional responses relating to cytokine signaling and monocyte activation. ATAC-seq also revealed a persistent pattern of differentially accessible chromatin which increased in abundance in early convalescent patients and did not return to the low levels observed in healthy individuals even 12 months after the acute infection. Thus, following severe SARS-CoV-2 infections, patients’ CD14+ monocytes carry specific and persistent epigenetic changes that puts them into an alerted state with heightened response characteristics.

Given that monocytes have a lifespan of a single day, the discovery of persistent epigenetic changes is notable and may reflect altered hematopoiesis and inheritance of epigenetic states from hematopoietic stem and progenitor cells (HSPC). To overcome the challenges associated with obtaining bone marrow resident HSPC, Cheong et al. developed a platform to enrich rare circulating HSPCs from PBMC and demonstrated that these faithfully represent the diversity and functional characteristics of their bone marrow-derived counterparts. With this platform, they discovered lasting epigenetic changes in HSPC of post-COVID patients that resembled those observed in mature monocytes. Especially late post-COVID HSPC exhibited skewed hematopoiesis with a significant increase of granulocyte monocyte precursor (GMP) cells. Intriguingly, the stem cells and the mature monocytes shared epigenetic signatures indicating that epigenetic and transcriptional programs are inherited by the mature progeny. The previously identified M.SC3 module activity was similarly increased in stem cells of the same patients.

Read the rest of this article HERE

Source: Boes, M., Falter-Braun, P. Long-COVID-19: the persisting imprint of SARS-CoV-2 infections on the innate immune system. Sig Transduct Target Ther 8, 460 (2023). https://doi.org/10.1038/s41392-023-01717-9 https://www.nature.com/articles/s41392-023-01717-9 (Full text)

Exploring the Joint Potential of Inflammation, Immunity, and Receptor-Based Biomarkers for Evaluating ME/CFS Progression

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition with no identified diagnostic biomarkers to date. Its prevalence is as high as 0.89% according to metastudies, with a quarter of patients bed-or home-bound, which presents a serious public health challenge. Investigations into the inflammation-immunity axis is encouraged by links to outbreaks and disease waves. Recently, research of our group revealed that antibodies to beta2adrenergic (anti-β2AdR) and muscarinic acetylcholine (anti-M4) receptors demonstrate sensitivity to the progression of ME/CFS.

The purpose of this study is to investigate the joint potential of inflammatome -characterized by interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-21, Il-23, IL-6, IL-17A, Activin-B, immunome (IgG1, IgG2, IgG3, IgG4, IgM, IgA) and receptor-based biomarkers (anti-M3, anti-M4, anti-β2AdR) determined for evaluating ME/CFS progression, and to identify an optimal selection for future validation in prospective clinical studies.

Methods: A dataset was used originating from 188 persons, including 54 healthy controls, 30 patients classified as “mild” by severity, 73 as “moderate,” and 31 as “severe,” clinically assessed by Fukuda/CDC 1994 and International consensus criteria. Markers characterizing inflammatome, immunome, and receptor-based biomarkers were determined in blood plasma via ELISA and multiplex methods.

Statistical analysis was done via correlation analysis, principal component, and linear discriminant analysis, and random forest classification; inter-group differences tested via nonparametric Kruskal-Wallis H test followed by the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli, and via Mann-Whitney U test.

The association between inflammatome and immunome markers is broader and stronger (coupling) in severe group. Principal component factoring separate components affiliated with inflammatome, immunome, and receptor biomarkers. Random forest modeling demonstrates an out-of-box accuracy for splitting healthy/with condition groups of over 90%, and of 45% for healthy/severity groups. Classifiers with the highest potential are anti-β2AdR, anti-M4, IgG4, IL-2, and IL-6.

Discussion: Association between inflammatome and immunome markers is a candidate for controlled clinical study of ME/CFS progression markers that could be used for treatment individualization. Thus, coupling effects between inflammation and immunity have a potential for the identification of prognostic factors in the context of ME/CFS progression mechanism studies.

Source: Uldis Berkis, Simons Svirskis, Angelika Krumina, Sabine Gravelsina, Anda Vilmane, Diana Araja, Zaiga Nora-Krukle, Modra Murovska. Exploring the Joint Potential of Inflammation, Immunity, and Receptor-Based Biomarkers for Evaluating ME/CFS Progression. Frontiers in Immunology. Sec. Autoimmune and Autoinflammatory Disorders : Autoimmune Disorders. Volume 14- 2023.  https://www.frontiersin.org/articles/10.3389/fimmu.2023.1294758/abstract

Chronic Fatigue and Dysautonomia following COVID-19 Vaccination Is Distinguished from Normal Vaccination Response by Altered Blood Markers

Abstract:

SARS-CoV-2 mRNA vaccination can entail chronic fatigue/dysautonomia tentatively termed post-acute COVID-19 vaccination syndrome (PACVS). We explored receptor autoantibodies and interleukin-6 (IL-6) as somatic correlates of PACVS. Blood markers determined before and six months after first-time SARS-CoV-2 vaccination of healthy controls (N = 89; 71 females; mean/median age: 39/49 years) were compared with corresponding values of PACVS-affected persons (N = 191; 159 females; mean/median age: 40/39 years) exhibiting chronic fatigue/dysautonomia (≥three symptoms for ≥five months after the last SARS-CoV-2 mRNA vaccination) not due to SARS-CoV-2 infection and/or confounding diseases/medications.

Normal vaccination response encompassed decreases in 11 receptor antibodies (by 25-50%, p < 0.0001), increases in two receptor antibodies (by 15-25%, p < 0.0001) and normal IL-6. In PACVS, serological vaccination-response appeared significantly (p < 0.0001) altered, allowing discrimination from normal post-vaccination state (sensitivity = 90%, p < 0.0001) by increased Angiotensin II type 1 receptor antibodies (cut-off ≤ 10.7 U/mL, ROC-AUC = 0.824 ± 0.027), decreased alpha-2B adrenergic receptor antibodies (cut-off ≥ 25.2 U/mL, ROC-AUC = 0.828 ± 0.025) and increased IL-6 (cut-off ≤ 2.3 pg/mL, ROC-AUC = 0.850 ± 0.022). PACVS is thus indicated as a somatic syndrome delineated/detectable by diagnostic blood markers.

Source: Semmler A, Mundorf AK, Kuechler AS, Schulze-Bosse K, Heidecke H, Schulze-Forster K, Schott M, Uhrberg M, Weinhold S, Lackner KJ, Pawlitzki M, Meuth SG, Boege F, Ruhrländer J. Chronic Fatigue and Dysautonomia following COVID-19 Vaccination Is Distinguished from Normal Vaccination Response by Altered Blood Markers. Vaccines (Basel). 2023 Oct 26;11(11):1642. doi: 10.3390/vaccines11111642. PMID: 38005974. https://www.mdpi.com/2076-393X/11/11/1642 (Full text)