Long COVID Diagnostic with Differentiation from Chronic Lyme Disease using Machine Learning and Cytokine Hubs

Abstract:

The absence of a diagnostic for long COVID (LC) or post-acute sequelae of COVID-19 (PASC) has profound implications for research and potential therapeutics. Further, symptom-based identification of patients with long-term COVID-19 lacks the specificity to serve as a diagnostic because of the overlap of symptoms with other chronic inflammatory conditions like chronic Lymedisease (CLD), myalgic encephalomyelitis-chronic fatigue syndrome (ME-CFS), and others. Here, we report a machine-learning approach to long COVID diagnosis using cytokine hubs that are also capable of differentiating long COVID from chronic Lyme.

We constructed three tree-based classifiers: decision tree, random forest, and gradient-boosting machine (GBM) and compared their diagnostic capabilities. A 223 patient dataset was partitioned into training (178 patients) and evaluation (45 patients) sets. The GBM model was selected based on performance (89% Sensitivity and 96% Specificity for LC) with no evidence of overfitting.

We tested the GBM on a random dataset of 124 individuals (106 PASC and 18 Lyme), resulting in high sensitivity (97%) and specificity 90% for LC). A Lyme Index composed of two features ((TNF-alpha +IL-4)/(IFN-gamma + IL-2) and (TNF-alpha *IL-4)/(IFN-gamma + IL-2 + CCL3) was constructed as a confirmatory algorithm to discriminate between LC and CLD.

Source: Bruce Patterson, Jose Guevara-Coto, Javier Mora et al. Long COVID Diagnostic with Differentiation from Chronic Lyme Disease using Machine Learning and Cytokine Hubs, 18 January 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3873244/v1] https://www.researchsquare.com/article/rs-3873244/v1 (Full text)

Exploring the Joint Potential of Inflammation, Immunity, and Receptor-Based Biomarkers for Evaluating ME/CFS Progression

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition with no identified diagnostic biomarkers to date. Its prevalence is as high as 0.89% according to metastudies, with a quarter of patients bed-or home-bound, which presents a serious public health challenge. Investigations into the inflammation-immunity axis is encouraged by links to outbreaks and disease waves. Recently, research of our group revealed that antibodies to beta2adrenergic (anti-β2AdR) and muscarinic acetylcholine (anti-M4) receptors demonstrate sensitivity to the progression of ME/CFS.

The purpose of this study is to investigate the joint potential of inflammatome -characterized by interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-21, Il-23, IL-6, IL-17A, Activin-B, immunome (IgG1, IgG2, IgG3, IgG4, IgM, IgA) and receptor-based biomarkers (anti-M3, anti-M4, anti-β2AdR) determined for evaluating ME/CFS progression, and to identify an optimal selection for future validation in prospective clinical studies.

Methods: A dataset was used originating from 188 persons, including 54 healthy controls, 30 patients classified as “mild” by severity, 73 as “moderate,” and 31 as “severe,” clinically assessed by Fukuda/CDC 1994 and International consensus criteria. Markers characterizing inflammatome, immunome, and receptor-based biomarkers were determined in blood plasma via ELISA and multiplex methods.

Statistical analysis was done via correlation analysis, principal component, and linear discriminant analysis, and random forest classification; inter-group differences tested via nonparametric Kruskal-Wallis H test followed by the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli, and via Mann-Whitney U test.

The association between inflammatome and immunome markers is broader and stronger (coupling) in severe group. Principal component factoring separate components affiliated with inflammatome, immunome, and receptor biomarkers. Random forest modeling demonstrates an out-of-box accuracy for splitting healthy/with condition groups of over 90%, and of 45% for healthy/severity groups. Classifiers with the highest potential are anti-β2AdR, anti-M4, IgG4, IL-2, and IL-6.

Discussion: Association between inflammatome and immunome markers is a candidate for controlled clinical study of ME/CFS progression markers that could be used for treatment individualization. Thus, coupling effects between inflammation and immunity have a potential for the identification of prognostic factors in the context of ME/CFS progression mechanism studies.

Source: Uldis Berkis, Simons Svirskis, Angelika Krumina, Sabine Gravelsina, Anda Vilmane, Diana Araja, Zaiga Nora-Krukle, Modra Murovska. Exploring the Joint Potential of Inflammation, Immunity, and Receptor-Based Biomarkers for Evaluating ME/CFS Progression. Frontiers in Immunology. Sec. Autoimmune and Autoinflammatory Disorders : Autoimmune Disorders. Volume 14- 2023.  https://www.frontiersin.org/articles/10.3389/fimmu.2023.1294758/abstract

Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments

Abstract:

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling.

Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36).

Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1β responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1β-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals.

Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.

Source: Raju Paul S, Scholzen A, Reeves PM, Shepard R, Hess JM, Dzeng RK, Korek S, Garritsen A, Poznansky MC, Sluder AE. Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments. Front Immunol. 2023 Oct 11;14:1249581. doi: 10.3389/fimmu.2023.1249581. PMID: 37885896; PMCID: PMC10598782. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598782/ (Full text)

Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID

Simple Summary:

In this study, we looked at how persistent inflammation affects peripheral body temperature and sympathovagal balance in individuals with long COVID. Increased temperature and reduced heart rate variability were directly related to the increase in inflammatory cytokines and reduction in anti-inflammatory cytokines. We identified a possible “molecular signature” for long COVID, characterised by a Th17 inflammatory profile with a reduced anti-inflammatory response, resulting in alterations in homeostatic functions and sympathovagal balance.

Abstract:

A persistent state of inflammation has been reported during the COVID-19 pandemic. This study aimed to assess short-term heart rate variability (HRV), peripheral body temperature, and serum cytokine levels in patients with long COVID. We evaluated 202 patients with long COVID symptoms categorized them according to the duration of their COVID symptoms (≤120 days, n = 81; >120 days, n = 121), in addition to 95 healthy individuals selected as controls.
All HRV variables differed significantly between the control group and patients with long COVID in the ≤120 days group (p < 0.05), and participants in the long COVID ≤120 days group had higher temperatures than those in the long COVID >120 days group in all regions analysed (p < 0.05).
Cytokine analysis showed higher levels of interleukin 17 (IL-17) and interleukin 2 (IL-2), and lower levels of interleukin 4 (IL-4) (p < 0.05). Our results suggest a reduction in parasympathetic activation during long COVID and an increase in body temperature due to possible endothelial damage caused by the maintenance of elevated levels of inflammatory mediators.
Furthermore, high serum levels of IL-17 and IL-2 and low levels of IL-4 appear to constitute a long-term profile of COVID-19 cytokines, and these markers are potential targets for long COVID-treatment and prevention strategies.
Source: Neves PFMd, Quaresma JAS, Queiroz MAF, Silva CC, Maia EV, Oliveira JSdS, Neves CMAd, Mendonça SdS, Falcão ASC, Melo GS, Santos IBF, Sousa JRd, Santos EJMd, Vasconcelos PFdC, Vallinoto ACR, Falcão LFM. Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID. Biology. 2023; 12(5):749. https://doi.org/10.3390/biology12050749 https://www.mdpi.com/2079-7737/12/5/749 (Full text)

Proteomics and cytokine analyses distinguish myalgic encephalomyelitis/chronic fatigue syndrome cases from controls

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS.

Methods: We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects.

Results: ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins.

Conclusions: These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.

Source: Giloteaux L, Li J, Hornig M, Lipkin WI, Ruppert D, Hanson MR. Proteomics and cytokine analyses distinguish myalgic encephalomyelitis/chronic fatigue syndrome cases from controls. J Transl Med. 2023 May 13;21(1):322. doi: 10.1186/s12967-023-04179-3. PMID: 37179299. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04179-3 (Full text)

Cytokine deficiencies in patients with Long-COVID

Abstract:

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of Interferon Gamma (IFNγ) and Interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID.

We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

Source: Williams ES, Martins TB, Shah KS, Hill HR, Coiras M, Spivak AM, Planelles V. Cytokine Deficiencies in Patients with Long-COVID. J Clin Cell Immunol. 2022;13(6):672. Epub 2022 Nov 18. PMID: 36742994; PMCID: PMC9894377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894377/ (Full text)

High levels of pro-inflammatory SARS-CoV-2-specific biomarkers revealed by in vitro whole blood cytokine release assay (CRA) in recovered and long-COVID-19 patients

Abstract:

Background: Cytokines induced by SARS-CoV-2 infection play a crucial role in the pathophysiology of COVID-19 and hyperinflammatory responses have been associated with poor clinical outcomes, with progression to severe conditions or long-term subacute complications named as long-COVID-19.

Methods: In this cross-sectional study, we aimed to evaluate a set of antigen-specific inflammatory cytokines in blood from recovered COVID-19 individuals or who suffered a post-acute phase of SARS-CoV-2 infection compared to healthy individuals with no history of COVID-19 exposition or infection. Interferon-gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), tumor necrosis factor (TNF), IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, and IL-17A were quantified by multiplex cytometric bead assay and enzyme-linked immunosorbent assay after stimulation of whole blood with recombinant Spike protein from SARS-CoV-2. Additionally, all participants have evaluated for anti-(S) protein-specific IgG antibodies. Clinical specimens were collected within two months of COVID-19 diagnosis.

Results: A total of 47 individuals were enrolled in the study, a median age of 43 years (IQR = 14.5), grouped into healthy individuals with no history of infection or exposure to SARS-CoV-2 (unexposed group; N = 21); and patients from the Health Complex of the Rio de Janeiro State University (UERJ), Brazil, who were SARS-CoV-2 positive by RT-PCR (COVID-19 group)–categorized as recovered COVID-19 (N = 11) or long-COVID-19 (N = 15). All COVID-19 patients presented at least one signal or symptom during the first two weeks of infection. Six patients were hospitalized and required invasive mechanical ventilation.

Our results showed that COVID-19 patients had significantly higher levels of IFN-γ, TNF, IL-1β, IL-2, IL-6, IL-8, and IP-10 than the unexposed group. The long-COVID-19 group has presented significantly high levels of IL-1β and IL-6 compared to unexposed individuals, but not from recovered COVID-19. A principal-component analysis demonstrated 84.3% of the total variance of inflammatory-SARS-CoV-2 response in the first two components, and it was possible to stratify IL-6, TNF, IL-1β, IL-10, and IL-2 as the top-five cytokines which are candidates to discriminate COVID-19 group (including long-COVID-19 subgroup) and healthy unexposed individuals.

Conclusion: We revealed important S protein-specific differential biomarkers in individuals affected by COVID-19, bringing new insights into the inflammatory status or SARS-CoV-2 exposition determination.

Source: Gomes SMR, Brito ACdS, Manfro WFP, Ribeiro-Alves M, Ribeiro RSdA, da Cal MS, et al. (2023) High levels of pro-inflammatory SARS-CoV-2-specific biomarkers revealed by in vitro whole blood cytokine release assay (CRA) in recovered and long-COVID-19 patients. PLoS ONE 18(4): e0283983. https://doi.org/10.1371/journal.pone.0283983 (Full text)

Evidence of previous SARS-CoV-2 infection in seronegative patients with long COVID

Abstract:

Background: There is currently no consensus on the diagnosis, definition, symptoms, or duration of COVID-19 illness. The diagnostic complexity of Long COVID is compounded in many patients who were or might have been infected with SARS-CoV-2 but not tested during the acute illness and/or are SARS-CoV-2 antibody negative.

Methods: Given the diagnostic conundrum of Long COVID, we set out to investigate SARS-CoV-2-specific T cell responses in patients with confirmed SARS-CoV-2 infection and/or Long COVID from a cohort of mostly non-hospitalised patients.

Findings: We discovered that IL-2 release (but not IFN-γ release) from T cells in response to SARS-CoV-2 peptides is both sensitive (75% +/-13%) and specific (88%+/-7%) for previous SARS-CoV-2 infection >6 months after a positive PCR test. We identified that 42-53% of patients with Long COVID, but without detectable SARS-CoV-2 antibodies, nonetheless have detectable SARS-CoV-2 specific T cell responses.

Interpretation: Our study reveals evidence (detectable T cell mediated IL-2 release) of previous SARS-CoV-2 infection in seronegative patients with Long COVID.

Funding: This work was funded by the Addenbrooke’s Charitable Trust (900276 to NS), NIHR award (G112259 to NS) and supported by the NIHR Cambridge Biomedical Research Centre. NJM is supported by the MRC (TSF MR/T032413/1) and NHSBT (WPA15-02). PJL is supported by the Wellcome Trust (PRF 210688/Z/18/Z, 084957/Z/08/Z), a Medical Research Council research grant MR/V011561/1 and the United Kingdom Research and a Innovation COVID Immunology Consortium grant (MR/V028448/1).

Source: Krishna BA, Lim EY, Mactavous L; NIHR BioResource Team, Lyons PA, Doffinger R, Bradley JR, Smith KGC, Sinclair J, Matheson NJ, Lehner PJ, Wills MR, Sithole N. Evidence of previous SARS-CoV-2 infection in seronegative patients with long COVID. EBioMedicine. 2022 Jul;81:104129. doi: 10.1016/j.ebiom.2022.104129. Epub 2022 Jun 27. PMID: 35772216; PMCID: PMC9235296. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235296/ (Full text)

Associations Between Psychological and Immunological Variables in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Systematic Review

Abstract:

Background: Little emphasis has been given to the fact that various psychological processes and behaviors in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) have neural correlates that affect-and are affected by-the immune system. The aim of this paper is to provide a systematic review of the literature on cross-sectional and longitudinal associations between psychological and immunological variables/changes in CFS/ME.

Methods: The systematic literature search was conducted on Dec 10, 2020 using PubMed. Original research studies investigating associations between a predefined set of psychological and immunological variables in CFS/ME were included. Specifically, the review was focused on studies examining the following psychological variables: executive function, emotion regulation, interpersonal function, sleep, mental health, anxiety, depression, and/or other psychiatric symptoms. In terms of immunological variables, studies investigating interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor (TNF), CD4+, and/or CD8+ were included. Besides original research papers, other potentially relevant papers (e.g., literature reviews) were carefully read and reference lists were checked in order to identify any additional relevant studies. Available data was summarized in text and tables.

Results: The literature search identified 897 potentially relevant papers. Ultimately, 14 studies (807 participants in total) were included in the review of which only two were longitudinal in nature. The review indicated that executive function is associated with IL-1 and IL-6, and interpersonal function is associated with IL-6 and TNF-α. Further, the available data suggested that emotion regulation is associated with IL-2 and sleep is associated with IL-1, IL-6, TNF-α, and IL-2. Interestingly, poorer emotion regulation, interpersonal function, and sleep have all been found to be associated with higher cytokine levels. Executive function has shown both positive and negative relationships with cytokines and among these psychological constructs, it is also the only one that has been found to be associated with CD4+ and CD8+ counts/percentages.

Conclusions: Correlations exist between psychological and immunological variables in CFS/ME. However, there are few consistent findings and there is almost a complete lack of longitudinal studies. This review points to a gap in existing CFS/ME research and hopefully, it will inspire to the generation of innovative, psychoneuroimmunological hypotheses within the CFS/ME research field.

Source: Raanes EFW, Stiles TC. Associations Between Psychological and Immunological Variables in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Systematic Review. Front Psychiatry. 2021 Nov 23;12:716320. doi: 10.3389/fpsyt.2021.716320. PMID: 34887782; PMCID: PMC8650213.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650213/  (Full text)

The effect of IL-2 stimulation and treatment of TRPM3 on channel co-localisation with PIP 2 and NK cell function in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated.

Methods: NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured.

Results: Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients.

Conclusion: Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.

Source: Eaton-Fitch N, Cabanas H, du Preez S, Staines D, Marshall-Gradisnik S. The effect of IL-2 stimulation and treatment of TRPM3 on channel co-localisation with PIP2 and NK cell function in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med. 2021 Jul 15;19(1):306. doi: 10.1186/s12967-021-02974-4. PMID: 34266470.  https://pubmed.ncbi.nlm.nih.gov/34266470/