Severe mental illness, race/ethnicity, multimorbidity and mortality following COVID-19 infection: nationally representative cohort study

Abstract:

Background: The association of COVID-19 with death in people with severe mental illness (SMI), and associations with multimorbidity and ethnicity, are unclear.

Aims: To determine all-cause mortality in people with SMI following COVID-19 infection, and assess whether excess mortality is affected by multimorbidity or ethnicity.

Method: This was a retrospective cohort study using primary care data from the Clinical Practice Research Database, from February 2020 to April 2021. Cox proportional hazards regression was used to estimate the effect of SMI on all-cause mortality during the first two waves of the COVID-19 pandemic.

Results: Among 7146 people with SMI (56% female), there was a higher prevalence of multimorbidity compared with the non-SMI control group (n = 653 024, 55% female). Following COVID-19 infection, the SMI group experienced a greater risk of death compared with controls (adjusted hazard ratio (aHR) 1.53, 95% CI 1.39-1.68). Black Caribbean/Black African people were more likely to die from COVID-19 compared with White people (aHR = 1.22, 95% CI 1.12-1.34), with similar associations in the SMI group and non-SMI group (P for interaction = 0.73). Following infection with COVID-19, for every additional multimorbidity condition, the aHR for death was 1.06 (95% CI 1.01-1.10) in the SMI stratum and 1.16 (95% CI 1.15-1.17) in the non-SMI stratum (P for interaction = 0.001).

Conclusions: Following COVID-19 infection, patients with SMI were at an elevated risk of death, further magnified by multimorbidity. Black Caribbean/Black African people had a higher risk of death from COVID-19 than White people, and this inequity was similar for the SMI group and the control group.

Source: Das-Munshi J, Bakolis I, Bécares L, Dyer J, Hotopf M, Ocloo J, Stewart R, Stuart R, Dregan A. Severe mental illness, race/ethnicity, multimorbidity and mortality following COVID-19 infection: nationally representative cohort study. Br J Psychiatry. 2023 Nov;223(5):518-525. doi: 10.1192/bjp.2023.112. PMID: 37876350; PMCID: PMC7615273. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615273/ (Full text)

Pharmacological evaluation of vitamin D in COVID-19 and long COVID-19: recent studies confirm clinical validation and highlight metformin to improve VDR sensitivity and efficacy

Abstract:

Nearly four years after its first appearance, and having gone from pandemic to endemic, the SARS-CoV-2 remains out of control globally. The purpose of this study was to evaluate the clinical efficacy of vitamin D (VD) in COVID-19 and long COVID-19, explain the discrepancy in clinical outcomes and highlight the potential impact of metformin on VD efficacy in recent articles.

Articles from January 2022 to August 2023 were selected for this review. The objective of this study was achieved by reviewing, analyzing, and discussing articles demonstrating (1) the mechanism of action of VD (2) observational or randomized clinical trials (RCTs) that support or not the beneficial clinical effects of VD in COVID-19 or long COVID. (3) genetic and non-genetic reasons for the variation in the effects of VD.

Articles were collected from electronic databases such as PubMed, Scopus, MEDLINE, Google Scholar, Egyptian Knowledge Bank, Science Direct, and Cochrane Database of Systematic Reviews. Twenty three studies conducted in vitro or in animal models indicated that VD may act in COVID-19 through protecting the respiratory system by antimicrobial peptide cathelicidins, reducing lung inflammation, regulating innate and adaptive immune functions and up regulation of autophagy gene activity. Our review identified 58 clinical studies that met the criteria. The number of publications supporting a beneficial clinical activity of VD in treating COVID-19 was 49 (86%), including 12 meta-analyses. Although the total patients included in all articles was 14,071,273, patients included in publications supporting a beneficial role of VD in COVID-19 were 14,029,411 (99.7%).

Collectively, extensive observational studies indicated a decisive relationship between low VD levels and the severity of COVID-19 and mortality outcomes. Importantly, evidence from intervention studies has demonstrated the effectiveness of VD supplements in treating COVID-19. Furthermore, the results of 4 observational studies supported the beneficial role of VD in alleviating symptoms of long COVID-19 disease. However, eight RCTs and one meta-analysis of RCTs may contain low-grade evidence against a beneficial role of VD in COVID-19. Twenty-five articles have addressed the association between VDR and DBP genetic polymorphisms and treatment failure of VD in COVID-19.

Impaired VDR signaling may underlie the variability of VD effects as non-genetic mechanisms. Interestingly, in recent studies, metformin has a beneficial therapeutic role in COVID-19 and long COVID-19, possibly by improving AMPK signaling of the VDR and enhancing the efficacy of the VD. In conclusion, evidence has been significantly strengthened over the past 18 months, with several meta-analyses and RCTs reporting conclusive beneficial effects of VD supplementation against COVID-19 and highlighting metformin to improve VDR sensitivity and efficacy in treating COVID-19 and long COVID-19.

Source: Gomaa, A.A., Abdel-Wadood, Y.A., Thabet, R.H. et al. Pharmacological evaluation of vitamin D in COVID-19 and long COVID-19: recent studies confirm clinical validation and highlight metformin to improve VDR sensitivity and efficacy. Inflammopharmacol (2023). https://doi.org/10.1007/s10787-023-01383-x https://link.springer.com/article/10.1007/s10787-023-01383-x (Full text)

Long COVID Complicated by Fatal Cytomegalovirus and Aspergillus Infection of the Lungs: An Autopsy Case Report

Abstract:

After the acute phase of COVID-19, some patients develop long COVID. This term is used for a variety of conditions with a complex, yet not fully elucidated etiology, likely including the prolonged persistence of the virus in the organism and progression to lung fibrosis. We present a unique autopsy case of a patient with severe COVID-19 with prolonged viral persistence who developed interstitial lung fibrosis complicated by a fatal combination of cytomegalovirus and Aspergillus infection. SARS-CoV-2 virus was detected at autopsy in the lungs more than two months after the acute infection, although tests from the nasopharynx were negative.
Immune dysregulation after COVID-19 and the administration of corticoid therapy created favorable conditions for the cytomegalovirus and Aspergillus infection that were uncovered at autopsy. These pathogens may represent a risk for opportunistic infections, complicating not only the acute coronavirus infection but also long COVID, as was documented in the presented case.
Source:Krivosikova L, Kuracinova T, Martanovic P, Hyblova M, Kaluzay J, Uhrinova A, Janega P, Babal P. Long COVID Complicated by Fatal Cytomegalovirus and Aspergillus Infection of the Lungs: An Autopsy Case Report. Viruses. 2023; 15(9):1810. https://doi.org/10.3390/v15091810 https://www.mdpi.com/1999-4915/15/9/1810 (Full text)

Vagus nerve inflammation contributes to dysautonomia in COVID-19

Abstract:

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction.

We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19.

Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.

Source:Woo MS, Shafiq M, Fitzek A, Dottermusch M, Altmeppen H, Mohammadi B, Mayer C, Bal LC, Raich L, Matschke J, Krasemann S, Pfefferle S, Brehm TT, Lütgehetmann M, Schädler J, Addo MM, Schulze Zur Wiesch J, Ondruschka B, Friese MA, Glatzel M. Vagus nerve inflammation contributes to dysautonomia in COVID-19. Acta Neuropathol. 2023 Jul 15. doi: 10.1007/s00401-023-02612-x. Epub ahead of print. PMID: 37452829. https://link.springer.com/article/10.1007/s00401-023-02612-x (Full text)

Long COVID syndrome after SARS-CoV-2 survival in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension

Abstract:

Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) patients have a more severe COVID-19 course than the general population. Many patients report different persistent symptoms after SARS-CoV-2 infection. The aim of our study is to analyze the prevalence of long COVID-19 symptoms and assess if COVID-19 affects pulmonary hypertension (PH) prognosis.

PAH/CTEPH patients who survived COVID-19 for at least 3 months before visiting the PH centers were included in the study. The patients were assessed for symptoms in acute phase of SARS-CoV-2 infection and persisting in follow-up visit, WHO functional class, 6-min walk distance, NT-proBNP concentration. The COMPERA 2.0 model was used to calculate 1-year risk of death due to PH at baseline and at follow-up. Sixty-nine patients-54 (77.3%) with PAH and 15 (21.7%) with CTEPH, 68% women, with a median age of 47.5 years (IQR 37-68)-were enrolled in the study.

About 17.1% of patients were hospitalized due to COVID-19 but none in an ICU. At follow-up (median: 155 days after onset of SARS-CoV-2 symptoms), 62% of patients reported at least 1 COVID-19-related symptom and 20% at least 5 symptoms. The most frequently reported symptoms were: fatigue (30%), joint pain (23%), muscle pain (17%), nasal congestion (17%), anosmia (13%), insomnia (13%), and dyspnea (12%).

Seventy-two percent of PH patients had a low or intermediate-low risk of 1-year death due to PH at baseline, and 68% after COVID-19 at follow-up. Over 60% of PAH/CTEPH patients who survived COVID-19 suffered from long COVID-19 syndrome, but the calculated 1-year risk of death due to PH did not change significantly after surviving mild or moderate COVID-19.

Source: Wieteska-Miłek M, Kuśmierczyk-Droszcz B, Betkier-Lipińska K, Szmit S, Florczyk M, Zieliński P, Hoffman P, Krzesińki P, Kurzyna M. Long COVID syndrome after SARS-CoV-2 survival in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Pulm Circ. 2023 May 31;13(2):e12244. doi: 10.1002/pul2.12244. PMID: 37266140; PMCID: PMC10232226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232226/ (Full text)

Viable SARS-CoV-2 Omicron sub-variants isolated from autopsy tissues

Introduction: Pulmonary and extrapulmonary manifestations have been described after infection with SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The virus is known to persist in multiple organs due to its tropism for several tissues. However, previous reports were unable to provide definitive information about whether the virus is viable and transmissible. It has been hypothesized that the persisting reservoirs of SARS-CoV-2 in tissues could be one of the multiple potentially overlapping causes of long COVID.

Methods: In the present study, we investigated autopsy materials obtained from 21 cadaveric donors with documented first infection or reinfection at the time of death. The cases studied included recipients of different formulations of COVID-19 vaccines. The aim was to find the presence of SARS-CoV-2 in the lungs, heart, liver, kidneys, and intestines. We used two technical approaches: the detection and quantification of viral genomic RNA using RT-qPCR, and virus infectivity using permissive in vitro Vero E6 culture.

Results: All tissues analyzed showed the presence of SARS-CoV-2 genomic RNA but at dissimilar levels ranging from 1.01 × 102 copies/mL to 1.14 × 108 copies/mL, even among those cases who had been COVID-19 vaccinated. Importantly, different amounts of replication-competent virus were detected in the culture media from the studied tissues. The highest viral load were measured in the lung (≈1.4 × 106 copies/mL) and heart (≈1.9 × 106 copies/mL) samples. Additionally, based on partial Spike gene sequences, SARS-CoV-2 characterization revealed the presence of multiple Omicron sub-variants exhibiting a high level of nucleotide and amino acid identity among them.

Discussion: These findings highlight that SARS-CoV-2 can spread to multiple tissue locations such as the lungs, heart, liver, kidneys, and intestines, both after primary infection and after reinfections with the Omicron variant, contributing to extending knowledge about the pathogenesis of acute infection and understanding the sequelae of clinical manifestations that are observed during post-acute COVID-19.

Source: Santiago Maffia-Bizzozero, Cintia Cevallos, Federico Remes Lenicov, Rosa Nicole Freiberger, Cinthya Alicia Marcela Lopez, Alex Guano Toaquiza, Franco Sviercz, Patricio Jarmoluk, Cristina Bustos, Adriana Claudia D’Addario, Jorge Quarleri, and M. Victoria Delpino. Viable SARS-CoV-2 Omicron sub-variants isolated from autopsy tissues. Front. Microbiol., 22 May 2023. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1192832/full (Full text)

Long COVID: Plasma levels of neurofilament light chain in mild COVID-19 patients with neurocognitive symptoms

Abstract:

It is well known the potential of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection to induce post-acute sequelae, a condition called Long COVID. This syndrome includes several symptoms, but the central nervous system (CNS) main one is neurocognitive dysfunction. Recently it has been demonstrated the relevance of plasma levels of neurofilament light chain (pNfL), as a biomarker of early involvement of the CNS in COVID-19.

The aim of this study was to investigate the relationship between pNfL in patients with post-acute neurocognitive symptoms and the potential of NfL as a prognostic biomarker in these cases. A group of 63 long COVID patients ranging from 18 to 59 years-old were evaluated, submitted to a neurocognitive battery assessment, and subdivided in different groups, according to results. Plasma samples were collected during the long COVID assessment and used for measurement of pNfL with the Single molecule array (SIMOA) assays. Levels of pNfL were significantly higher in long COVID patients with neurocognitive symptoms when compared to HC (p = 0.0031).

Long COVID patients with cognitive impairment and fatigue symptoms presented higher pNfL levels when compared to long COVID patients without these symptoms, individually and combined (p = 0.0263, p = 0.0480, and 0.0142, respectively). Correlation analysis showed that levels of cognitive lost and exacerbation of fatigue in the neurocognitive evaluation had a significative correlation with higher pNfL levels (p = 0.0219 and 0.0255, respectively). Previous reports suggested that pNfL levels are related with higher risk of severity and predict lethality of COVID-19.

Our findings demonstrate that SARS-CoV-2 infection seems to have a long-term impact on the brain, even in patients who presented mild acute disease. NfL measurements might be useful to identify CNS involvement in long COVID associated with neurocognitive symptoms and to identify who will need continuous monitoring and treatment support.

Source: Gutman E, Salvio A, Fernandes R, et al. Long COVID: Plasma levels of neurofilament light chain in mild COVID-19 patients with neurocognitive symptoms. Research Square; 2023. DOI: 10.21203/rs.3.rs-2921879/v1. https://www.researchsquare.com/article/rs-2921879/v1 (Full text)

Coronavirus (COVID-19) Pandemic – A Comprehensive Review of Demographics, Comorbidities, Vaccines, Therapeutic Development, Blood Type, and Long Covid

Abstract:

The study summarizes the pandemic COVID-19’s impact on symptoms, demographics, comorbidities, and vaccine and therapeutic development and demonstrates an association with cases and mortality for the past two years. There has been rapid scientific advancement over the past two years 2020-2022 in developing vaccines and therapeutics for combating the disease. We chose three highly affected countries US, India, and China, to address the impact of demographics and comorbidities on COVID-19 using US Center for Disease Control and Prevention (CDC) data.

Based on the analysis of this data, we see that the infection rate is higher in females, while the percentage of death is higher in males than females (p < 0.0001), and the number of female cases among females has increased by 1.7% while the number of deaths among females has decreased by ~1%, within the last two years. The trend of getting affected byCOVID-19 is similar during 2020-2022, i.e., Whites followed by Hispanics and Black people.

After a thorough review of many manuscripts, we concluded that diseases like cardiovascular disease (CVD), diabetes, hypertension, chronic pulmonary obstructive disease (COPD), and acute respiratory distress syndrome (ARDS) were the typical comorbidities leading to severe COVID-19 conditions. In addition, variants of COVID-19, current vaccine and therapeutic development efforts, and relation of COVID-19 with blood type are discussed.

Finally, to conclude that for designing vaccine trials, following FDA’s guidance emphasizing stratification factors based on demographics and comorbidities should be considered while allocating treatment to patients.

Source: Bhattacharyya, Arinjita & Seth, Anand & Rai, Shesh. (2023). Coronavirus (COVID-19) Pandemic -A Comprehensive Review of Demographics, Comorbidities, Vaccines, Therapeutic Development, Blood Type, and Long Covid. 10.36959/856/540.  https://www.researchgate.net/profile/Arinjita_Bhattacharyya/publication/369579104_Coronavirus_COVID-19_Pandemic_-A_Comprehensive_Review_of_Demographics_Comorbidities_Vaccines_Therapeutic_Development_Blood_Type_and_Long_Covid/links/6423001ba1b72772e4318d7d/Coronavirus-COVID-19-Pandemic-A-Comprehensive-Review-of-Demographics-Comorbidities-Vaccines-Therapeutic-Development-Blood-Type-and-Long-Covid.pdf (Full text PDF file)

SARS-CoV-2 infection and persistence in the human body and brain at autopsy

Abstract:

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14.

Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset.

We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract.

Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.

Source: Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, Winkler CW, Sun J, Dickey JM, Ylaya K, Ko SH, Platt AP, Burbelo PD, Quezado M, Pittaluga S, Purcell M, Munster VJ, Belinky F, Ramos-Benitez MJ, Boritz EA, Lach IA, Herr DL, Rabin J, Saharia KK, Madathil RJ, Tabatabai A, Soherwardi S, McCurdy MT; NIH COVID-19 Autopsy Consortium; Peterson KE, Cohen JI, de Wit E, Vannella KM, Hewitt SM, Kleiner DE, Chertow DS. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022 Dec;612(7941):758-763. doi: 10.1038/s41586-022-05542-y. Epub 2022 Dec 14. PMID: 36517603; PMCID: PMC9749650. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749650/ (Full text)