The long COVID evidence gap in England

Introduction:

The term long COVID, also known as post-COVID-19 condition, was coined in spring, 2020, by individuals with ongoing symptoms following COVID-19 in response to unsatisfactory recognition of this emerging syndrome by health-care practitioners.

In September to November, 2020, clinical codes for persistent post-COVID-19 condition and related referrals were introduced and became available for use by health-care practitioners to record details of clinical encounters in electronic health records (EHRs) in England. EHRs, which cover a large proportion of individuals living in England, are increasingly used to help understand the epidemiology of disease alongside the effectiveness and safety of interventions.
Many factors influence the completeness of information in EHRs, including help-seeking behaviour of patients and the discretion and data-recording behaviour of practitioners. Longitudinal population-based studies often include participant self-reports of illness; hence, these studies might be subject to reporting and participation biases. Comparing reported illness in studies to recorded illness in the EHRs of the same individuals might be helpful in understanding the epidemiology and clinical recognition of emerging conditions such as long COVID.
Source: Knuppel A, Boyd A, Macleod J, Chaturvedi N, Williams DM. The long COVID evidence gap in England. Lancet. 2024 May 6:S0140-6736(24)00744-X. doi: 10.1016/S0140-6736(24)00744-X. Epub ahead of print. PMID: 38729195. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(24)00744-X/fulltext (Full text)

The Role of Heparin in Postural Orthostatic Tachycardia Syndrome and Other Post-Acute Sequelae of COVID-19

Abstract:

The therapeutic management and short-term consequences of the coronavirus disease 2019 (COVID-19) are well known. However, COVID-19 post-acute sequelae are less known and represent a public health problem worldwide. Patients with COVID-19 who present post-acute sequelae may display immune dysregulation, a procoagulant state, and persistent microvascular endotheliopathy that could trigger microvascular thrombosis. These elements have also been implicated in the physiopathology of postural orthostatic tachycardia syndrome, a frequent sequela in post-COVID-19 patients.
These mechanisms, directly associated with post-acute sequelae, might determine the thrombotic consequences of COVID-19 and the need for early anticoagulation therapy. In this context, heparin has several potential benefits, including immunomodulatory, anticoagulant, antiviral, pro-endothelial, and vascular effects, that could be helpful in the treatment of COVID-19 post-acute sequelae. In this article, we review the evidence surrounding the post-acute sequelae of COVID-19 and the potential benefits of the use of heparin, with a special focus on the treatment of postural orthostatic tachycardia syndrome.

Source: Gómez-Moyano E, Pavón-Morón J, Rodríguez-Capitán J, Bardán-Rebollar D, Ramos-Carrera T, Villalobos-Sánchez A, Pérez de Pedro I, Ruiz-García FJ, Mora-Robles J, López-Sampalo A, et al. The Role of Heparin in Postural Orthostatic Tachycardia Syndrome and Other Post-Acute Sequelae of COVID-19. Journal of Clinical Medicine. 2024; 13(8):2405. https://doi.org/10.3390/jcm13082405 https://www.mdpi.com/2077-0383/13/8/2405 (Full text)

An amyloidogenic fragment of the SARS CoV-2 envelope protein promotes serum amyloid A misfolding and fibrillization

Abstract:

SARS CoV-2 infection can affect a surprising number of organs in the body and cause symptoms such as abnormal blood coagulation, fibrinolytic disturbances, and neurodegeneration. Our study delves into the intricate pathogenic potential of a SARS-CoV-2 envelope protein peptide, shedding light on its implications for multi-organ effects and amyloid formation. Specifically, we focus on the peptide SK9 or 54SFYVYSRVK62 derived from the C-terminus of human SARS coronavirus 2 envelope protein.

We demonstrate that SK9 containing peptides readily form classic amyloid structures consistent with predictions of amyloid aggregation algorithms. In vivo, overexpression of proteases such as neutrophil elastase during inflammation can potentially lead to C-terminal peptides containing SK9. We also demonstrate that SK9 can promote the fibrillization of SAA, a protein marker of acute inflammation.

Our investigations reveal that the aromatic residues Phe2 and Tyr3 of SK9 play a pivotal role in its amyloidogenic function. We show that the primary sites of SK9-SAA binding lie in the amyloidogenic hotspots of SAA itself. Our results highlight two possible complications of SARS CoV-2 infection in individuals with hyper-inflammation either due to amyloids arising from SK9 containing peptides or SK9-induced AA amyloidosis.

Source: Asal Nady, Sean E. Reichheld, Simon Sharpe. An amyloidogenic fragment of the SARS CoV-2 envelope protein promotes serum amyloid A misfolding and fibrillization. bioRxiv 2024.04.25.591137; doi: https://doi.org/10.1101/2024.04.25.591137 https://www.biorxiv.org/content/10.1101/2024.04.25.591137v1.full (Full text)

Persistence of SARS-CoV-2 in Platelets and Megakaryocytes in Long COVID

Abstract:

Background: We have shown that acute COVID-19 pathophysiology is profoundly altered by infection of lung megakaryocytes (MKs) and platelets by SARS‑CoV‑2 (Zhu et al, 2022). A significant proportion of COVID-19 patients have symptoms persisting for > 3 months after initial infection with SARS-CoV-2, referred to as Long COVID or Post-acute Sequelae of SARS-CoV-2 (PASC) patients. Persistent or re-emerging symptoms are varied, with a predominance of asthenia, neuro-cognitive impairment and cardio-vascular symptoms. The pathophysiology underlying long-onset COVID remains poorly understood.

Methods: Blood was collected from patients with Long COVID with symptoms duration > 3 months (LC) (n=30), previously infected by SARS-CoV-2 but without persistent symptoms (resolved COVID-19 (CR), n=10), or healthy donor (n=20). MK frequency in blood was quantified by flow cytometry. Platelets and blood MKs were analysed for microclots, the presence of Spike protein and SARS-CoV-2 RNA by in situ hybridization and immunodetection visualized by confocal microscopy. Spike and serotonin were quantified in plasma.

Results: The frequency of CD41+ MKs in peripheral blood mononucleated cells (PBMCs) was significantly higher than healthy donors (0.28±0.05 versus 0.03±0.02) as a sign of MK infection, as we previously shown in acutely infected individuals with SARS-CoV-2 in platelets. Accordingly, in all samples analyzed, circulating MK in Long COVID sheltered both Spike and SARS-CoV-2 ssRNA, but also dsRNA suggestive of viral replication. These infected MKs produced blood platelets that contain also P Spike and SARS-CoV-2 ssRNA. Platelets microclots were detected in all tested Long COVID patients. Spike protein was detected at the pg level in 30 % of analyzed plasma from Long COVID but not CR individuals. The level of serotonin in platelet and of tryptophan hydroxylase-1 (TPH-1), the enzyme that regulates serotonin synthesis decreased significantly (p<0.0001) in blood of Long COVID patients compared to CR individuals.

Conclusions: In patients developing Long COVID, SARS-CoV-2 persists and replicates in MKs producing virus-containing platelets. The presence of spike in plasma might be an additional sign of viral persistence that could be used as a Long COVID biomarker. The presence of the virus could lead to abnormal platelet activation and the formation of microclots, which would contribute to the various symptoms and to deregulation of serotonin uptake, contributing to the neurocognitive symptoms observed in long-onset COVID.

Source: Feifan He, Boxin Huang, Andrea Cottignies-Calamarte, Wiem Bouchneb, Agathe Goubard, Faroudy Boufassa, Jacques Callebert, Dominique Salmon, Morgane Bomsel. Persistence of SARS-CoV-2 in Platelets and Megakaryocytes in Long COVID. The Conference on Retroviruses and Opportunistic Infections (CROI), March 3-6, 2024 | Denver, Colorado. https://www.croiconference.org/abstract/persistence-of-sars-cov-2-in-platelets-and-megakaryocytes-in-long-covid/ 

Cognitive profile in multiple sclerosis and post-COVID condition: a comparative study using a unified taxonomy

Abstract:

Post-COVID condition (PCC) and multiple sclerosis (MS) share some clinical and demographic features, including cognitive symptoms and fatigue. Some pathophysiological mechanisms well-known in MS, such as autoimmunity, neuroinflammation and myelin damage, have also been implicated in PCC. In this study, we aimed to compare the cognitive phenotypes of two large cohorts of patients with PCC and MS, and to evaluate the relationship between fatigue and cognitive performance.

Cross-sectional study including 218 patients with PCC and 218 with MS matched by age, sex, and years of education. Patients were evaluated with a comprehensive neuropsychological protocol and were categorized according to the International Classification of Cognitive Disorders system. Fatigue and depression were also assessed.

Cognitive profiles of PCC and MS largely overlapped, with a greater impairment in episodic memory in MS, but with small effect sizes. The most salient deficits in both disorders were in attention and processing speed. The severity of fatigue was greater in patients with PCC. Still, the correlations between fatigue severity and neuropsychological tests were more prominent in the case of MS. There were no differences in the severity of depression among groups. Our study found similar cognitive profiles in PCC and MS. Fatigue was more severe in PCC, but was more associated with cognitive performance in MS. Further comparative studies addressing the mechanisms related to cognitive dysfunction and fatigue may be of interest to advance the knowledge of these disorders and develop new therapies.

Source: Delgado-Alonso C, Delgado-Alvarez A, Díez-Cirarda M, Oliver-Mas S, Cuevas C, Montero-Escribano P, Ramos-Leví AM, Gil-Moreno MJ, López-Carbonero JI, Hermann BP, Matias-Guiu J, Matias-Guiu JA. Cognitive profile in multiple sclerosis and post-COVID condition: a comparative study using a unified taxonomy. Sci Rep. 2024 Apr 29;14(1):9806. doi: 10.1038/s41598-024-60368-0. PMID: 38684843; PMCID: PMC11059260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059260/ (Full text)

PASC (Post Acute Sequelae of COVID-19) is associated with decreased neutralizing antibody titers in both biological sexes and increased ANG-2 and GM-CSF in females

Abstract:

Post-acute sequelae of COVID-19 (PASC) or the continuation of COVID-19 (Coronavirus disease 2019) symptoms past 12 weeks may affect as many as 30% of people recovering from a SARS-CoV-2 (severe acute respiratory coronavirus 2) infection. The mechanisms regulating the development of PASC are currently not known; however, hypotheses include virus reservoirs, pre-existing conditions, microblood clots, immune dysregulation, as well as poor antibody responses. Importantly, virus neutralizing antibodies are essential for COVID-19 recovery and protection from reinfection but there is currently limited information on these immune regulators and associated cytokines in PASC patients. Understanding the key drivers of general and specific symptoms associated with Long COVID and the presence of virus neutralizing antibodies in PASC will aid in the development of therapeutics, diagnostics, and vaccines which currently do not exist.

We designed a cross-sectional study to investigate systemic antibody and cytokine responses during COVID-19 recovery and PASC. In total, 195 participants were recruited in one of four groups: (1) Those who never had COVID-19 (No COVID); (2) Those in acute COVID-19 recovery (Acute Recovery) (4–12 weeks post infection); (3) Those who recovered from COVID-19 (Recovered) (+ 12 weeks from infection); and (4) those who had PASC (PASC) (+ 12 weeks from infection). Participants completed a questionnaire on health history, sex, gender, demographics, experiences with COVID-19 acute and COVID-19 recovery/continuing symptoms. Serum samples collected were evaluated for antibody binding to viral proteins, virus neutralizing antibody titers, and serum cytokine levels using Ella SimplePlex Immunoassay™ panels.

We found participants with PASC reported more pre-existing conditions (e.g. such as hypertension, asthma, and obesity), and PASC symptoms (e.g. fatigue, brain fog, headaches, and shortness of breath) following COVID-19 than COVID-19 Recovered individuals. Importantly, we found PASC individuals to have significantly decreased levels of neutralizing antibodies toward both SARS-CoV-2 and the Omicron BA.1 variant. Sex analysis indicated that female PASC study participants had sustained antibody levels as well as levels of the inflammatory cytokines GM-CSF and ANG-2 over time following COVID-19.

Our study reports people experiencing PASC had lower levels of virus neutralizing antibodies; however, the results are limited by the collection time post-COVID-19 and post-vaccination. Moreover, we found females experiencing PASC had sustained levels of GM-CSF and ANG-2. With lower levels of virus neutralizing antibodies, this data suggests that PASC individuals not only have had a suboptimal antibody response during acute SARS-CoV-2 infection but may also have increased susceptibility to subsequent infections which may exacerbate or prolong current PASC illnesses. We also provide evidence suggesting GM-CSF and ANG-2 to play a role in the sex-bias of PASC. Taken together, our findings maybe important for understanding immune molecular drivers of PASC and PASC subgroups.

Source: Jansen EB, Ostadgavahi AT, Hewins B, Buchanan R, Thivierge BM, Sganzerla Martinez G, Goncin U, Francis ME, Swan CL, Scruten E, Bell J, Darbellay J, Facciuolo A, Falzarano D, Gerdts V, Fenton ME, Hedlin P, Kelvin DJ, Kelvin AA. PASC (Post Acute Sequelae of COVID-19) is associated with decreased neutralizing antibody titers in both biological sexes and increased ANG-2 and GM-CSF in females. Sci Rep. 2024 Apr 29;14(1):9854. doi: 10.1038/s41598-024-60089-4. PMID: 38684819; PMCID: PMC11058778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058778/ (Full text)

Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches

Abstract:

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms.

This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated.

We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.

Source: Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience. 2024 Apr 26. doi: 10.1007/s11357-024-01165-5. Epub ahead of print. PMID: 38668888. https://link.springer.com/article/10.1007/s11357-024-01165-5 (Full text)

Oxidative Stress is a shared characteristic of ME/CFS and Long COVID

Abstract:

More than 65 million individuals worldwide are estimated to have Long COVID (LC), a complex multisystemic condition, wherein patients of all ages report fatigue, post-exertional malaise, and other symptoms resembling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). With no current treatments or reliable diagnostic markers, there is an urgent need to define the molecular underpinnings of these conditions.

By studying bioenergetic characteristics of peripheral blood lymphocytes in over 16 healthy controls, 15 ME/CFS, and 15 LC, we find both ME/CFS and LC donors exhibit signs of elevated oxidative stress, relative to healthy controls, especially in the memory subset. Using a combination of flow cytometry, bulk RNA-seq analysis, mass spectrometry, and systems chemistry analysis, we also observed aberrations in ROS clearance pathways including elevated glutathione levels, decreases in mitochondrial superoxide dismutase levels, and glutathione peroxidase 4 mediated lipid oxidative damage.

Critically, these changes in redox pathways show striking sex-specific trends. While females diagnosed with ME/CFS exhibit higher total ROS and mitochondrial calcium levels, males with an ME/CFS diagnosis have normal ROS levels, but larger changes in lipid oxidative damage. Further analyses show that higher ROS levels correlates with hyperproliferation of T cells in females, consistent with the known role of elevated ROS levels in the initiation of proliferation. This hyperproliferation of T cells can be attenuated by metformin, suggesting this FDA-approved drug as a possible treatment, as also suggested by a recent clinical study of LC patients.

Thus, we report that both ME/CFS and LC are mechanistically related and could be diagnosed with quantitative blood cell measurements. We also suggest that effective, patient tailored drugs might be discovered using standard lymphocyte stimulation assays.

Source: Vishnu Shankar, Julie Wilhelmy, Basil Michael, Layla Cervantes, Vamsee Mallajosyula, Ronald Davis, Michael Snyder, Shady Younis,
William H Robinson, Sadasivan Shankar, Paul Mischel, Hector Bonilla, Mark Davis. Oxidative Stress is a shared characteristic of ME/CFS and Long COVID. bioRxiv 2024.05.04.592477; doi: https://doi.org/10.1101/2024.05.04.592477  https://www.biorxiv.org/content/10.1101/2024.05.04.592477v1https://www.biorxiv.org/content/10.1101/2024.05.04.592477v1 (Full text available as PDF file)

Long COVID: lights and shadows on the clinical characterization of this emerging pathology

Abstract:

More than 800 million individuals have contracted SARSCOV2 infection worldwide. It was estimated that almost 10-20% of these might suffer from Long COVID. It is a multisystemic syndrome, which negatively affects the quality of life with a significant burden of health loss compared to COVID negative individuals. Moreover, the risk of sequelae still remains high at 2 years in both nonhospitalized and hospitalized individuals.

This review summarizes studies regarding long COVID and clarifies the definitions, the risk factors and the management of this syndrome. Finally, it delves into the most frequent long-term outcomes, especially postural orthostatic tachycardia syndrome” (POTS), myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), brain fog, and their therapeutical possibilities.

Source: Cogliandro V, Bonfanti P. Long COVID: lights and shadows on the clinical characterization of this emerging pathology. New Microbiol. 2024 May;47(1):15-27. PMID: 38700879. https://pubmed.ncbi.nlm.nih.gov/38700879/

Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target

Abstract:

Introduction: Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients.

Methods: Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol.

Results: This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX.

Discussion: Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.

Source: Etianne Martini Sasso, Katsuhiko Muraki, Natalie Eaton-Fitch, Peter Smith, Andrew Jeremijenko, Paul Griffin, Sonya Marshall-Gradisnik. Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target. Front. Immunol., 02 May 2024; Sec. Multiple Sclerosis and Neuroimmunology; Volume 15 – 2024 | https://doi.org/10.3389/fimmu.2024.1264702. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1264702/full (Full text)