Abstract:
Tag: covid-19
Assessing symptoms of long/post COVID and chronic fatigue syndrome using the DePaul symptom questionnaire-2: a validation in a German-speaking population
Abstract:
Objective: A subset of Covid-19 survivors will develop persisting health sequelae (i.e. Long Covid/LC or Post Covid/PC) similar to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). In the absence of a reliable biomarker to diagnose LC/PC and ME/CFS, their classification based on symptoms becomes indispensable. Hence, we translated and validated the DePaul Symptom Questionnaire−2 (DSQ-2), to offer a screening tool for the German-speaking population.
Methods: A sample of healthy adults, and adults with ME/CFS and LC/PC (N = 502) completed a reduced-item version of the DSQ-2 and SF-36 questionnaire online. We performed an exploratory factor analysis, assessed construct validity, diagnostic accuracy and compared the symptom profiles of individuals with ME/CFS versus LC/PC versus healthy adults.
Results: Exploratory factor analysis revealed a 10-factor solution with excellent internal consistencies. The sensitivity of the DSQ-2 was excellent. The specificity was moderate with moderate inter-rater reliability. Construct validity of the DSQ-2 was supported by strong negative correlations with physical health subscales of the SF-36. A visual comparison of the symptom profiles of individuals with ME/CFS versus LC/PC revealed a comparable pattern.
Conclusion: Despite lower symptom severity, individuals with LC/PC reported significantly stronger limitations in general health and physical functioning and were more likely to meet ME/CFS diagnostic criteria with ongoing sickness duration, suggesting that ME/CFS can be considered a long-term sequela of LC/PC. This study offers a translated and validated version of the reduced-item DSQ-2 that can guide medical evaluation and aid physicians in identifying a ME/CFS-like subtype of LC/PC.
Source: (2023) Assessing symptoms of long/post COVID and chronic fatigue syndrome using the DePaul symptom questionnaire-2: a validation in a German-speaking population, Fatigue: Biomedicine, Health & Behavior, DOI: 10.1080/21641846.2023.2295419 https://www.tandfonline.com/doi/full/10.1080/21641846.2023.2295419 (Full text)
Urine Metabolite Analysis to Identify Pathomechanisms of Long COVID: A Pilot Study
Abstract:
Background: Around 10% of people who had COVID-9 infection suffer from persistent symptoms such as fatigue, dyspnoea, chest pain, arthralgia/myalgia, sleep disturbances, cognitive dysfunction and impairment of mental health. Different underlying pathomechanisms appear to be involved, in particular inflammation, alterations in amino acid metabolism, autonomic dysfunction and gut dysbiosis.
Aim: As routine tests are often inconspicuous in patients with Long COVID (LC), similarly to patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), accessible biomarkers indicating dysregulation of specific pathways are urgently needed to identify underlying pathomechanisms and enable personalized medicine treatment. Within this pilot study we aimed to proof traceability of altered metabolism by urine analysis.
Patients and methods: Urine metabolome analyses were performed to investigate the metabolic signature of patients with LC (n = 25; 20 women, 5 men) in comparison to healthy controls (Ctrl, n = 8; 7 women, 1 man) and individuals with ME/CFS (n = 8; 2 women, 6 men). Concentrations of neurotransmitter precursors tryptophan, phenylalanine and their downstream metabolites, as well as their association with symptoms (fatigue, anxiety and depression) in the patients were examined.
Results and conclusion: Phenylalanine levels were significantly lower in both the LC and ME/CFS patient groups when compared to the Ctrl group. In many LC patients, the concentrations of downstream metabolites of tryptophan and tyrosine, such as serotonin, dopamine and catecholamines, deviated from the reference ranges. Several symptoms (sleep disturbance, pain or autonomic dysfunction) were associated with certain metabolites. Patients experiencing fatigue had lower levels of kynurenine, phenylalanine and a reduced kynurenine to tryptophan ratio (Kyn/Trp). Lower concentrations of gamma-aminobutyric acid (GABA) and higher activity of kynurenine 3-monooxygenase (KMO) were observed in patients with anxiety.
Conclusively, our results suggest that amino acid metabolism and neurotransmitter synthesis is disturbed in patients with LC and ME/CFS. The identified metabolites and their associated dysregulations could serve as potential biomarkers for elucidating underlying pathomechanisms thus enabling personalized treatment strategies for these patient populations.
Source: Taenzer M, Löffler-Ragg J, Schroll A, Monfort-Lanzas P, Engl S, Weiss G, Brigo N, Kurz K. Urine Metabolite Analysis to Identify Pathomechanisms of Long COVID: A Pilot Study. Int J Tryptophan Res. 2023 Dec 22;16:11786469231220781. doi: 10.1177/11786469231220781. PMID: 38144169; PMCID: PMC10748708. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748708/ (Full text)
Clinical features of Japanese patients with gastrointestinal long-COVID symptoms
Introduction:
Although the development of new therapeutic approaches and vaccines has decreased coronavirus disease 2019 (COVID-19)-associated mortality, prolonged systemic symptoms after COVID-19, termed long-COVID, have been a major concern, considering their potential impact on health-related quality of life (QOL). Gastrointestinal (GI) symptoms, including diarrhea and abdominal pain, have been reported in patients with long-COVID even months after the initial COVID-19 symptoms have resolved.
Although emerging evidence suggests that GI symptoms in long-COVID are affected by the dysregulation of the immune system or ongoing inflammation and damage to the GI tract caused by the initial COVID-19 infection, the clinical features of patients with GI long-COVID symptoms remain elusive. Our study aimed to clarify these features.
Source: Kazuma Yagi, Takanori Asakura, Hideki Terai, Keiko Ohgino, Katsunori Masaki, Ho Namkoong, Shotaro Chubachi, Jun Miyata, Ichiro Kawada, Nobuhiro Kodama, Satoshi Sakamoto, Akira Umeda, Takashi Ishiguro, Makoto Ishii, Koichi Fukunaga. JGH Open. First published: 06 December 2023 https://doi.org/10.1002/jgh3.13006 https://onlinelibrary.wiley.com/doi/full/10.1002/jgh3.13006 (Full text)
Mechanisms of long COVID: An updated review
Abstract:
The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous impact on global health and economies. In some patients, symptoms and signs may remain after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alternate diagnosis; this condition has been defined as long COVID.
Long COVID may exist in patients with both mild and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symptoms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized the clinical presentations and current evidence regarding the pathogenesis of long COVID.
Source: Yan Liu, Xiaoying Gu, Haibo Li, Hui Zhang, Jiuyang Xu. Mechanisms of long COVID: An updated review. Chinese Medical Journal Pulmonary and Critical Care Medicine, Volume 1, Issue 4, December 2023, Pages 231-240. https://www.sciencedirect.com/science/article/pii/S2772558823000580 (Full text)
Investigating the Human Intestinal DNA Virome and Predicting Disease-Associated Virus-Host Interactions in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
Abstract:
Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome.
Key features are the identification of a core virome comprising tailed phages of the class Caudoviricetes, and a greater diversity of DNA viruses including extracellular phages and integrated prophages. Using an in silico approach, we predicted interactions between members of the Anaerotruncus genus and unique viruses present in ME/CFS microbiomes. This study therefore provides a framework and rationale for studies of larger cohorts of patients to further investigate disease-associated interactions between the intestinal virome and the bacteriome.
Source: Hsieh SY, Savva GM, Telatin A, Tiwari SK, Tariq MA, Newberry F, Seton KA, Booth C, Bansal AS, Wileman T, Adriaenssens EM, Carding SR. Investigating the Human Intestinal DNA Virome and Predicting Disease-Associated Virus-Host Interactions in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Mol Sci. 2023 Dec 8;24(24):17267. doi: 10.3390/ijms242417267. PMID: 38139096. https://www.mdpi.com/1422-0067/24/24/17267 (Full text)
Large scale phenotyping of long COVID inflammation reveals mechanistic subtypes of disease after COVID-19 hospitalisation
Abstract:
Source: Peter Openshaw, Felicity Liew, Claudia Efstathiou et al. Large scale phenotyping of long COVID inflammation reveals mechanistic subtypes of disease after COVID-19 hospitalisation, 04 December 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3427282/v1] https://www.researchsquare.com/article/rs-3427282/v1 (Full text)
COVID-19 mRNA Vaccination Reduces the Occurrence of Post-COVID Conditions in U.S. Children Aged 5-17 Years Following Omicron SARS-CoV-2 Infection, July 2021-September 2022
Abstract:
Differential Cardiopulmonary Hemodynamic Phenotypes in PASC Related Exercise Intolerance
Abstract:
Background Post-acute sequelae of COVID-19 (PASC) affects a significant portion of patients who have previously contracted SARS-CoV-2, with exertional intolerance being a prominent symptom.
Study Objective This study aimed to characterize the invasive hemodynamic abnormalities of PASC-related exertional intolerance using a larger data set from invasive cardiopulmonary exercise testing (iCPET).
Study Design & Intervention Fifty-five patients were recruited from the Yale Post-COVID-19-Recovery-Program, with most experiencing mild acute illness. Supine right heart catheterization (RHC) and iCPET were performed on all participants.
Main results The majority (75%) of PASC patients exhibited impaired peak systemic oxygen extraction (pEO2) during iCPET in conjunction with supranormal cardiac output (CO) (i.e., PASC alone group), On average, the PASC alone group exhibited a “normal” peak exercise capacity, VO2 (89±18% predicted). Approximately 25% of patients had evidence of central cardiopulmonary pathology (i.e., 12 with resting and exercise HFpEF and 2 with exercise PH). PASC patient with HFpEF (i.e., PASC HFpEF group) exhibited similarly impaired pEO2 with well compensated PH (i.e., peak VO2 and cardiac output >80% respectively) despite aberrant central cardiopulmonary exercise hemodynamics. PASC patients with HFpEF also exhibited increased body mass index of 39±7 kg·m−2. To examine the relative contribution of obesity to exertional impairment in PASC HFpEF, a control group compromising of obese non-PASC group (n=61) derived from historical iCPET cohort was used. The non-PASC obese patients with preserved peak VO2 (>80% predicted) exhibited a normal peak pulmonary artery wedge pressure (17±14 versus 25±6 mmHg; p=0.03) with similar maximal voluntary ventilation (90±12 versus 86±10%predicted; p=0.53) compared to PASC HFpEF patients. Impaired pEO2 was not significantly different between PASC patients who underwent supervised rehabilitation and those who did not (p=0.19).
Conclusions This study highlights the importance of considering impaired pEO2 in PASC patients with persistent exertional intolerance unexplained by conventional investigative testing. Results of current study also highlights the prevalence of a distinct high output failure HFpEF phenotype in PASC with a primary peripheral limitation to exercise.
Source: Peter A. Kahn, Phillip Joseph, Paul M. Heerdt, Inderjit Singh. Differential Cardiopulmonary Hemodynamic Phenotypes in PASC Related Exercise Intolerance. ERJ Open Research Jan 2023, 00714-2023; DOI: 10.1183/23120541.00714-2023 https://openres.ersjournals.com/content/early/2023/12/07/23120541.00714-2023 (Full text available as PDF file)
Microvascular Capillary and Precapillary Cardiovascular Disturbances Strongly Interact to Severely Affect Tissue Perfusion and Mitochondrial Function in ME/CFS Evolving from the Post COVID-19 Syndrome
Abstract: