Cerebral Blood Flow in Orthostatic Intolerance

Abstract:

Cerebral blood flow (CBF) is vital for delivering oxygen and nutrients to the brain. Many forms of orthostatic intolerance (OI) involve impaired regulation of CBF in the upright posture, which results in disabling symptoms that decrease quality of life. Because CBF is not easy to measure, rises in heart rate or drops in blood pressure are used as proxies for abnormal CBF. These result in diagnoses such as postural orthostatic tachycardia syndrome and orthostatic hypotension. However, in many other OI syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and long COVID, heart rate and blood pressure are frequently normal despite significant drops in CBF. This often leads to the incorrect conclusion that there is nothing hemodynamically abnormal in these patients and thus no explanation or treatment is needed. There is a need to measure CBF, as orthostatic hypoperfusion is the shared pathophysiology for all forms of OI. In this review, we examine the literature studying CBF dysfunction in various syndromes with OI and evaluate methods of measuring CBF including transcranial Doppler ultrasound, extracranial cerebral blood flow ultrasound, near infrared spectroscopy, and wearable devices.

Source: Khan MS, Miller AJ, Ejaz A, Molinger J, Goyal P, MacLeod DB, Swavely A, Wilson E, Pergola M, Tandri H, Mills CF, Raj SR, Fudim M. Cerebral Blood Flow in Orthostatic Intolerance. J Am Heart Assoc. 2025 Feb 3:e036752. doi: 10.1161/JAHA.124.036752. Epub ahead of print. PMID: 39895557. https://www.ahajournals.org/doi/10.1161/JAHA.124.036752 (Full text)

Tetrahydrobiopterin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Friend or Foe?

Abstract:

Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (ME/CFS) is a chronic multisystem disease characterized by severe muscle fatigue, pain, dizziness, and brain fog. The two most common symptoms are post-exertional malaise (PEM) and orthostatic intolerance (OI). ME/CFS patients with OI (ME+OI) suffer from dizziness or faintness due to a sudden drop in blood pressure while maintaining an upright posture. Clinical research has demonstrated that patients with OI display severe cardiovascular abnormalities resulting in reduced effective blood flow in the cerebral blood vessels. However, despite intense investigation, it is not known why the effective cerebral blood flow is reduced in OI patients. Based on our recent findings, we observed that tetrahydrobiopterin (BH4) metabolism was highly dysregulated in ME+OI patients. In the current review article, we attempted to summarize our recent findings on BH4 metabolism to shed light on the molecular mechanisms of OI.

Source: Rahman AFMT, Benko A, Bulbule S, Gottschalk CG, Arnold LA, Roy A. Tetrahydrobiopterin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Friend or Foe? Biomolecules. 2025 Jan 10;15(1):102. doi: 10.3390/biom15010102. PMID: 39858496; PMCID: PMC11763651. https://pmc.ncbi.nlm.nih.gov/articles/PMC11763651/ (Full text)

The Cardiac Output-Cerebral Blood Flow Relationship Is Abnormal in Most Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with a Normal Heart Rate and Blood Pressure Response During a Tilt Test

Abstract:

Introduction: Orthostatic intolerance is highly prevalent in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and is caused by an abnormal reduction in cerebral blood flow (CBF). In healthy controls (HCs), the regulation of CBF is complex and cardiac output (CO) is an important determinant of CBF: a review showed that a 30% reduction in CO results in a 10% reduction in CBF. In previous and separate ME/CFS studies, we showed that CO and CBF decreased to a similar extent during tilt testing.

The aim of the study: to test the relationship between CBF and CO, which seems to be abnormal in ME/CFS patients and is different from that in HCs.

Methods: In this retrospective study we analyzed this relationship in a large group of patients. To compare the patient data with those of HCs, we focused on patients with a normal heart rate (HR) and blood pressure (BP) response to upright tilt. Also, the influence of clinical data was analyzed. A total of 534 ME/CFS patients and 49 HCs underwent tilt testing with measurements of HR, BP, CBF, CO, and end-tidal PCO2. To measure CBF, extracranial Doppler flow velocity and vessel diameters were obtained using a GE echo system. The same device was used to measure suprasternal aortic flow velocities. End-tidal PCO2 was recorded using a Nonin Lifesense device.

Results: In 46 (9%) patients, CO and CBF changes were in the normal range for HCs, and in 488 (91%) an abnormal CO and CBF reduction was found. In patients with abnormal CO and CBF reductions, the slope of the regression line of CO versus CBF reduction was almost 1. The multiple regression analysis of the latter group showed that the CO reduction for the most part predicted the CBF reduction, with a limited role for the PETCO2 reduction.

Conclusions: Two different patient groups with a normal HR and BP response during the tilt were identified: those with a CO and CBF in the normal range for HCs and those with an abnormal CO and CBF reduction during the tilt (91% of patients). In the latter group of patients, an almost 1:1 relationship between the CO and CBF reduction suggests the absence of compensatory vasodilation in the cerebral vasculature. This might indicate endothelial dysfunction in most ME/CFS patients and may have clinical and therapeutic implications.

Source: van Campen CLMC, Verheugt FWA, Rowe PC, Visser FC. The Cardiac Output-Cerebral Blood Flow Relationship Is Abnormal in Most Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with a Normal Heart Rate and Blood Pressure Response During a Tilt Test. Healthcare (Basel). 2024 Dec 20;12(24):2566. doi: 10.3390/healthcare12242566. PMID: 39765993. https://www.mdpi.com/2227-9032/12/24/2566 (Full text)

Absence of BOLD adaptation in chronic fatigue syndrome revealed by task functional MRI

Abstract:

Neurological symptoms are central to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), yet its underlying neurophysiological mechanisms remain elusive. We examined a neglected aspect of task-based functional MRI, focusing on how blood oxygenation level-dependent (BOLD) signals alter during cognitive tasks in ME/CFS.

This prospective observational study utilised MRI scans on ME/CFS participants and healthy controls (HCs) with sedentary lifestyles (ACTRN12622001095752). Participants completed two blocks of a Symbol Digit Modalities Test, with 30 trials per block split into two sets. The fMRI signal changes between blocks and sets were compared within and between groups. Thirty-four ME/CFS participants (38 years ± 10; 27 women) and 34 HCs (38 ± 10; 27 women), were evaluated.

In the second task block, ME/CFS participants exhibited increased activation in the right postcentral gyrus, contrasting with decreased activation in multiple regions in HCs. These results were further confirmed by significantly higher bilateral dynamic changes (2nd vs 1st set) in the motor, sensory and cognitive cortex in ME/CFS compared to HCs and significant correlations between those changes in the left primary motor cortex with fatigue severities. BOLD adaptation, potentially improving energy economy, was absent in ME/CFS, which may provide an underlying neurophysiological process in ME/CFS.

Source: Schönberg L, Mohamed AZ, Yu Q, Kwiatek RA, Del Fante P, Calhoun VD, Shan ZY. Absence of BOLD adaptation in chronic fatigue syndrome revealed by task functional MRI. J Cereb Blood Flow Metab. 2024 Aug 7:271678X241270528. doi: 10.1177/0271678X241270528. Epub ahead of print. PMID: 39113421. https://journals.sagepub.com/doi/10.1177/0271678X241270528 (Full text)

Phenylephrine Alters Phase Synchronization between Cerebral Blood Velocity and Blood Pressure in Chronic Fatigue Syndrome with Orthostatic Intolerance

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with orthostatic intolerance (OI) is characterized by neuro-cognitive deficits perhaps related to upright hypocapnia and loss of cerebral autoregulation (CA). We performed N-back neurocognition testing and calculated the phase synchronization index (PhSI) between Arterial Pressure (AP) and cerebral blood velocity (CBV) as a time-dependent measurement of cerebral autoregulation in 11 control (mean age=24.1 years) and 15 ME/CFS patients (mean age=21.8 years). All ME/CFS patients had postural tachycardia syndrome (POTS).

A 10-minute 60⁰ head-up tilt (HUT) significantly increased heart rate (109.4 ± 3.9 vs. 77.2 ± 1.6 beats/min, P <0.05) and respiratory rate (20.9 ± 1.7 vs. 14.2 ± 1.2 breaths/min, P < 0.05) and decreased end-tidal CO2 (ETCO2; 33.9 ± 1.1 vs. 42.8 ± 1.2 Torr, P < 0.05) in ME/CFS vs. control. In ME/CFS, HUT significantly decreased CBV compared to control (-22.5% vs -8.7%, p<0.005).

To mitigate the orthostatic CBV reduction, we administered supplemental CO2, phenylephrine and acetazolamide and performed N-back testing supine and during HUT. Only phenylephrine corrected the orthostatic decrease in neurocognition by reverting % correct n=4 N-back during HUT in ME/CFS similar to control (ME/CFS=38.5±5.5 vs. ME/CFS+PE= 65.6±5.7 vs. Control 56.9±7.5). HUT in ME/CFS resulted in increased PhSI values indicating decreased CA. While CO2 and Acetazolamide had no effect on PhSI in ME/CFS, PE caused a significant reduction in PhSI (ME/CFS=0.80±0.03 vs ME/CFS+PE= 0.69±0.04, p< 0.05) and improved cerebral autoregulation. Thus, PE improved neurocognitive function in ME/CFS patients, perhaps related to improved neurovascular coupling, cerebral autoregulation and maintenance of CBV.

Source: Medow MS, Stewart JM. Phenylephrine Alters Phase Synchronization between Cerebral Blood Velocity and Blood Pressure in Chronic Fatigue Syndrome with Orthostatic Intolerance. Am J Physiol Regul Integr Comp Physiol. 2024 Apr 29. doi: 10.1152/ajpregu.00071.2024. Epub ahead of print. PMID: 38682242. https://journals.physiology.org/doi/abs/10.1152/ajpregu.00071.2024 (Full text available as PDF file)

Worsening Symptoms Is Associated with Larger Cerebral Blood Flow Abnormalities during Tilt-Testing in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Background and Objectives: During tilt testing, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients experience an abnormal reduction in cerebral blood flow (CBF). The relationship between this CBF reduction and symptom severity has not been examined in detail. Our hypothesis was that ME/CFS severity is related to the degree of the CBF reduction during tilt testing.
Materials and Methods: First, from our database, we selected ME/CFS patients who had undergone assessments of ME/CFS symptomatology and tilt tests on the same day, one at the first visit and the second during a follow-up. The change in symptomatology was related to the change in CBF during the tilt test. Second, we combined the data of two previously published studies (n = 219), where disease severity as defined by the 2011 international consensus criteria (ICC) was available but not published.
Results: 71 patients were retested because of worsening symptoms. The ICC disease severity distribution (mild-moderate-severe) changed from 51/45/4% at visit-1 to 1/72/27% at follow-up (p < 0.0001). The %CBF reduction changed from initially 19% to 31% at follow-up (p < 0.0001). Of 39 patients with stable disease, the severity distribution was similar at visit-1 (36/51/13%) and at follow-up (33/49/18%), p = ns. The %CBF reduction remained unchanged: both 24%, p = ns. The combined data of the two previously published studies showed that patients with mild, moderate, and severe disease had %CBF reductions of 25, 29, and 33%, respectively (p < 0.0001).
Conclusions: Disease severity and %CBF reduction during tilt testing are highly associated in ME/CFS: a more severe disease is related to a larger %CBF reduction. The data suggest a causal relationship where a larger CBF reduction leads to worsening symptoms.
Source: van Campen CMC, Rowe PC, Visser FC. Worsening Symptoms Is Associated with Larger Cerebral Blood Flow Abnormalities during Tilt-Testing in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Medicina. 2023; 59(12):2153. https://doi.org/10.3390/medicina59122153 https://www.mdpi.com/1648-9144/59/12/2153 (Full text)
Source:

Influence of end-tidal CO2 on cerebral blood flow during orthostatic stress in controls and adults with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Brain perfusion is sensitive to changes in CO2 levels (CO2 reactivity). Previously, we showed a pathological cerebral blood flow (CBF) reduction in the majority of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients during orthostatic stress. Limited data are available on the relation between CO2 and CBF changes in ME/CFS patients. Therefore, we studied this relation between ME/CFS patients and healthy controls (HC) during tilt testing.

In this retrospective study, supine and end-tilt CBF, as measured by extracranial Doppler flow, were compared with PET CO2 data in female patients either with a normal heart rate and blood pressure (HR/BP) response or with postural orthostatic tachycardia syndrome (POTS), and in HC. Five hundred thirty-five female ME/CFS patients and 34 HC were included.

Both in supine position and at end-tilt, there was a significant relation between CBF and PET CO2 in patients (p < 0.0001), without differences between patients with a normal HR/BP response and with POTS. The relations between the %CBF change and the PET CO2 reduction were both significant in patients and HC (p < 0.0001 and p = 0.0012, respectively).

In a multiple regression analysis, the patient/HC status and PET CO2 predicted CBF. The contribution of the PET CO2 to CBF changes was limited, with low adjusted R2 values. In female ME/CFS patients, CO2 reactivity, as measured during orthostatic stress testing, is similar to that of HC and is independent of the type of hemodynamic abnormality. However, the influence of CO2 changes on CBF changes is modest in female ME/CFS patients.

Source: van Campen CLMC, Rowe PC, Verheugt FWA, Visser FC. Influence of end-tidal CO2 on cerebral blood flow during orthostatic stress in controls and adults with myalgic encephalomyelitis/chronic fatigue syndrome. Physiol Rep. 2023 Sep;11(17):e15639. doi: 10.14814/phy2.15639. PMID: 37688420; PMCID: PMC10492011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492011/ (Full text)

Comparison of a 20 degree and 70 degree tilt test in adolescent myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients

Abstract:

Introduction: During a standard 70-degree head-up tilt test, 90% of adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) develop an abnormal reduction in cerebral blood flow (CBF). A 70-degree test might not be tolerated by young ME/CFS patients because of the high incidence of syncopal spells. This study examined whether a test at 20 degrees would be sufficient to provoke important reductions in CBF in young ME/CFS patients.

Methods: We analyzed 83 studies of adolescent ME/CFS patients. We assessed CBF using extracranial Doppler measurements of the internal carotid and vertebral arteries supine and during the tilt. We studied 42 adolescents during a 20 degree and 41 during a 70 degree test.

Results: At 20 degrees, no patients developed postural orthostatic tachycardia (POTS), compared to 32% at 70 degrees (p = 0.0002). The CBF reduction during the 20 degree tilt of -27(6)% was slightly less than during the reduction during a 70 degree test [-31(7)%; p = 0.003]. Seventeen adolescents had CBF measurements at both 20 and 70 degrees. The CBF reduction in these patients with both a 20 and 70 degrees test was significantly larger at 70 degrees than at 20 degrees (p < 0.0001).

Conclusions: A 20 degree tilt in young ME/CFS patients resulted in a CBF reduction comparable to that in adult patients during a 70 degree test. The lower tilt angle provoked less POTS, emphasizing the importance of using the 70 degree angle for that diagnosis. Further study is needed to explore whether CBF measurements during tilt provide an improved standard for classifying orthostatic intolerance.

Source: van Campen CLMC, Rowe PC, Visser FC. Comparison of a 20 degree and 70 degree tilt test in adolescent myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. Front Pediatr. 2023 May 12;11:1169447. doi: 10.3389/fped.2023.1169447. PMID: 37252045; PMCID: PMC10213432. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213432/ (Full text)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators?

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is often associated with various other syndromes or conditions including mast cell activation (MCA), dysmenorrhea and endometriosis, postural tachycardia (POTS) and small fiber neuropathy (SFN). The causes of these syndromes and the reason for their frequent association are not yet fully understood.

We previously published a comprehensive hypothesis of the ME/CFS pathophysiology that explains the majority of symptoms, findings and chronicity of the disease. We wondered whether some of the identified key pathomechanisms in ME/CFS are also operative in MCA, endometriosis and dysmenorrhea, POTS, decreased cerebral blood flow and SFN, and possibly may provide clues on their causes and frequent co-occurrence.

Our analysis indeed provides strong arguments in favor of this assumption, and we conclude that the main pathomechanisms responsible for this association are excessive generation and spillover into the systemic circulation of inflammatory and vasoactive tissue mediators, dysfunctional β2AdR, and the mutual triggering of symptomatology and disease initiation. Overall, vascular dysfunction appears to be a strong common denominator in these linkages.

Source: Wirth KJ, Löhn M. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators? Medicina. 2023; 59(5):978. https://doi.org/10.3390/medicina59050978  https://www.mdpi.com/1648-9144/59/5/978 (Full text)

Orthostatic chronotropic incompetence in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Highlights:

  • Adults with ME/CFS experience a 3-fold greater reduction in cerebral blood flow during end-tilt tilt compared to healthy controls, confirming orthostatic intolerance.
  • During tilt testing we found that in 134/362 (37%) patients with ME/CFS without POTS or hypotension, the heart rate increase was below the lower limit of the 95% prediction interval of the heart rate increase of controls, indicative of orthostatic chronotropic incompetence.
  • These novel findings represent the first description of orthostatic chronotropic incompetence during tilt testing, confirming another abnormality in the circulatory response to upright posture in ME/CFS.

Abstract:

Background: Orthostatic intolerance (OI) is a core diagnostic criterion in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The majority of ME/CFS patients have no evidence of hypotension or postural orthostatic tachycardia syndrome (POTS) during head-up tilt, but do show a significantly larger reduction in stroke volume index (SVI) when upright compared to controls. Theoretically a reduction in SVI should be accompanied by a compensatory increase in heart rate (HR). When there is an incomplete compensatory increase in HR, this is considered chronotropic incompetence.

This study explored the relationship between HR and SVI to determine whether chronotropic incompetence was present during tilt testing in ME/CFS patients.

Methods: From a database of individuals who had undergone tilt testing with Doppler measurements for SVI both supine and end-tilt, we selected ME/CFS patients and healthy controls (HC) who had no evidence of POTS or hypotension during the test.

To determine the relation between the HR increase and SVI decrease during the tilt test in patients, we calculated the 95% prediction intervals of this relation in HC. Chronotropic incompetence in patients was defined as a HR increase below the lower limit of the 95th % prediction interval of the HR increase in HC.

Results: We compared 362 ME/CFS patients with 52 HC. At end-tilt, tilt lasting for 15 (4) min, ME/CFS patients had a significantly lower SVI (22 (4) vs. 27 (4) ml/m2; p<0.0001) and a higher HR (87 (11) vs. 78 (15) bpm; p<0.0001) compared to HC. There was a similar relationship between HR and SVI between ME/CFS patients and HC in the supine position.

During tilt ME/CFS patients had a lower HR for a given SVI; 37% had an inadequate HR increase. Chronotropic incompetence was more common in more severely affected ME/CFS patients.

Conclusion: These novel findings represent the first description of orthostatic chronotropic incompetence during tilt testing in ME/CFS patients.

Source: C. (Linda) M.C. van Campen, Freek W.A. Verheugt, Peter C. Rowe, Frans C. Visser. Orthostatic chronotropic incompetence in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). IBRO Neuroscience Reports [In Press, Journal Pre-proof]  Available online 2 May 2023 https://www.sciencedirect.com/science/article/pii/S2667242123000374 (Full text)