Overlapping conditions in Long COVID at a multisite academic center

Abstract:

Background: Many patients experience persistent symptoms after COVID-19, a syndrome referred to as Long COVID (LC). The goal of this study was to identify novel new or worsening comorbidities self-reported in patients with LC.

Methods: Patients diagnosed with LC (n = 732) at the Mayo Long COVID Care Clinic in Rochester, Minnesota and Jacksonville, Florida were sent questionnaires to assess the development of new or worsening comorbidities following COVID-19 compared to patients with SARS-CoV-2 that did not develop LC (controls). Both groups were also asked questions screening for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), generalized joint hypermobility (GJH) and orthostatic intolerance. 247 people with LC (33.7%) and 40 controls (50%) responded to the surveys.

Results: In this study LC patients averaged 53 years of age and were predominantly White (95%) women (75%). The greatest prevalence of new or worsening comorbidities following SARS-CoV-2 infection in patients with LC vs. controls reported in this study were pain (94.4% vs. 0%, p < 0.001), neurological (92.4% vs. 15.4%, p < 0.001), sleep (82.8% vs. 5.3%, p < 0.001), skin (69.8% vs. 0%, p < 0.001), and genitourinary (60.6% vs. 25.0%, p = 0.029) issues. 58% of LC patients screened positive for ME/CFS vs. 0% of controls (p < 0.001), 27% positive for GJH compared to 10% of controls (p = 0.026), and a positive average score of 4.0 on orthostatic intolerance vs. 0 (p < 0.001). The majority of LC patients with ME/CFS were women (77%).

Conclusion: We found that comorbidities across 12 surveyed categories were increased in patients following SARS-CoV-2 infection. Our data also support the overlap of LC with ME/CFS, GJH, and orthostatic intolerance. We discuss the pathophysiologic, research, and clinical implications of identifying these conditions with LC.

Source: Grach SL, Dudenkov DV, Pollack B, Fairweather D, Aakre CA, Munipalli B, Croghan IT, Mueller MR, Overgaard JD, Bruno KA, Collins NM, Li Z, Hurt RT, Tal MC, Ganesh R, Knight DTR. Overlapping conditions in Long COVID at a multisite academic center. Front Neurol. 2024 Oct 25;15:1482917. doi: 10.3389/fneur.2024.1482917. PMID: 39524912; PMCID: PMC11543549. https://pmc.ncbi.nlm.nih.gov/articles/PMC11543549/ (Full text)

Qigong and Tai Chi for ME/CFS: A Systematic Review of Randomized Controlled Trials

Abstract:

Objective: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating illness with symptoms such as post-exertional malaise and cognitive dysfunction that can be challenging for patients to manage independently. Randomized controlled trials (RCTs) have examined mind-body and psychological approaches that teach patients coping skills for mitigating ME/CFS symptoms, including emerging literature on Qigong or Tai Chi instruction programs. This systematic review aims to summarize the characteristics of these trials and highlight potential areas for future optimization and refinement.

Methods: Ovid MEDLINE, Embase.com, Web of Science Core Collection, Cochrane CENTRAL, PsycINFO via Ovid, and ClinicalTrials.gov were searched in April 2023 using controlled vocabulary and keywords for the following eligibility criteria: Sample (ME/CFS), Design (RCT), Behavioral Intervention (mind-body or psychological interventions). Data extraction and reporting followed Cochrane and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Results: “Qigong” and “Tai Chi” yielded 142 and 80 abstracts, respectively. Of the 222 abstracts, full texts were available for 5 RCTs of Qigong (k = 5; N = 481). Notably, no trials of Tai Chi utilized a randomized control design. Among the 5 Qigong RCTs, the publication range was from 2012 to 2023. Details regarding intervention components and effects were summarized. Qigong intervention sessions (median = 12, mode = 10, 12) tended to last between 1-2 hours and occur across 5-12 weeks (median = 7, mode = 5). The Qigong interventions were all delivered in groups and incorporated at-home practice. Daily practice was a requirement (k = 4) or an advisement (k = 1). Patient-reported outcomes suggest an emerging evidence base for diffuse benefits on physical and emotional health outcomes.

Conclusions: Qigong interventions are promising, yet relatively understudied, in improving ME/CFS symptom severity and frequency. Future trials must implement standardized eligibility criteria for ME/CFS history, integrate Qigong or Tai Chi with other empirically supported mind-body and psychological practices, and assess long-term resiliency outcomes relevant to ME/CFS survivorship.

Source: Markwart M, Felsenstein D, Mehta DH, Sethi S, Tsuchiyose E, Lydson M, Yeh GY, Hall DL. Qigong and Tai Chi for ME/CFS: A Systematic Review of Randomized Controlled Trials. Glob Adv Integr Med Health. 2024 Nov 7;13:27536130241275607. doi: 10.1177/27536130241275607. PMID: 39524182; PMCID: PMC11544658. https://pmc.ncbi.nlm.nih.gov/articles/PMC11544658/ (Full text)

What can wage development before and after a G93.3 diagnosis tell us about prognoses for myalgic encephalomyelitis?

Highlights:

•The article used public register data to assess the prognosis of G93.3 patients.
•Patient wages started declining around 3 years before the G93.3 diagnosis.
•Dependency on public transfers had started to increase 7 years before diagnosis.
•Less than 6% maintained an income of at least median wages after diagnosis.
•Very few moved from no or very low wage incomes to median wages.

Abstract:

Prognoses for persons affected by myalgic encephalomyelitis (ME) are rarely studied systematically. Existing studies are often based on smaller samples with unclear inclusion and subjective outcome criteria, and few look at wages as indicators of illness trajectories. This article considers how ME affects the wages and dependency on public transfers of people affected over time, especially in the period when the welfare authorities investigate eligibility for disability pension.
We matched Norwegian population register data on 8485 working-age individuals diagnosed with G93.3 (postviral fatigue syndrome) from 2009 to 2018 with wage and transfer data and compared male and female cases to control groups. The G93.3 population’s wages fell sharply from around 3 years before diagnosis to 1 year after and stabilized at a low level. Public transfers started increasing several years before diagnosis and stabilized at a high level after.
Few of those making no or very low income around the time of the diagnosis resumed earning moderate wages, and only exceptional cases returned to wages corresponding to median wages.
Source: Anne Kielland, Jing Liu. What can wage development before and after a G93.3 diagnosis tell us about prognoses for myalgic encephalomyelitis? Social Sciences & Humanities Open. Volume 11, 2025, 101206. https://www.sciencedirect.com/science/article/pii/S2590291124004030 (Full text)

Infection-associated chronic conditions: Why Long Covid is our best chance to untangle Osler’s web

Abstract:

The recognition of Long Covid has renewed efforts to understand other infection-associated chronic conditions (IACCs). Here, we describe how studies of Long Covid and other IACCs might inform one another. We argue for the importance of a coordinated research agenda addressing these debilitating illnesses.

INTRODUCTION

For nearly a century, individuals with medically unexplained chronic conditions, particularly those thought to be attributable to presumably transient infectious pathogens, have faced bewilderment, skepticism, or outright dismissal from the medical establishment. Debilitating symptoms lasting for years have been reported after acute infections with viruses [enterovirus, Epstein-Barr virus (EBV), influenza virus, Ebola virus, dengue virus, chikungunya virus, West Nile virus, and severe acute respiratory syndrome coronavirus 1 (SARS-CoV)], bacteria (Borrelia and Anaplasma), and protozoa (Giardia) (1). Myalgic encephalomyelitis (ME), sometimes referred to as chronic fatigue syndrome (CFS), is perhaps the best example of a disabling syndrome that many experts believe follows an acute, often undiagnosed viral infection. Several names have been applied to these syndromes, including post-acute infection syndromes (PAIS), infection-associated chronic illnesses, and infection-associated chronic conditions (IACCs). Here, we will use IACCs.
Despite consistent reports regarding these conditions dating back nearly 100 years (24), the biomedical establishment has made limited progress in defining the epidemiology, natural history, and pathogenesis of most IACCs. No diagnostic tests are available, no widely accepted treatments exist, and industry engagement on finding a cure has been limited. In her 1996 book Osler’s Web, investigative journalist Hillary Johnson catalogued the challenges facing ME/CFS research (5), which can be applied to many IACCs. Barriers to progress included the inability to fit ME/CFS into existing disease paradigms, variability and inconsistency in case ascertainment, skepticism on the part of many clinicians and scientists, and intense stigma that kept many of those affected from seeking medical care. William Osler, the “father of modern medicine,” emphasized the importance of listening to patients to discern important features of their condition. However, contemporary medical practice relies heavily on diagnostic tests, which are currently inadequate to confirm the presence of an IACC. This results in people being neglected or misdiagnosed and prevents them from receiving appropriate care and support.
The year 2020 has the potential to be a turning point in this story. Shortly after the COVID-19 pandemic began, reports of individuals with prolonged COVID-attributed symptoms emerged, a condition now often referred to as Long Covid. The synchronicity of the inciting infection, universality of the exposure, and visibility, aided by social, popular, and scientific media (6), resulted in the ideal environment for a coordinated effort to understand this new IACC. Substantial investment in scientific effort is starting to pay off, with real progress in defining the epidemiology, natural history, and biology of Long Covid now emerging. After a Congressional appropriation, the US National Institutes of Health rapidly launched the Researching COVID to Enhance Recovery (RECOVER) initiative, which is the first large-scale program aimed at tackling an IACC. The progress to date has been hard-won, however, in part because there is no widely accepted clinical definition, biomarker, or diagnostic test for Long Covid. However, clinical trials, slow to start, are now being pursued in earnest. Although there is no guarantee that this momentum will be sustained without dedicated scientific and financial commitments (7), there is reason to believe that efforts to understand Long Covid have the potential to draw attention to, reframe, and revitalize the efforts to study other IACCs.
High-quality academic reviews of Long Covid are multiplying rapidly (812). Our goal in this Viewpoint is not to provide a comprehensive overview of the field but rather to place efforts to study Long Covid in the context of other IACCs. In doing so, we hope to outline several areas that we believe will require consideration as the field attempts to make progress in navigating what has been described as a “labyrinth” (5).
Read the rest of this article HERE.
Source: Michael J. Peluso et al. Infection-associated chronic conditions: Why Long Covid is our best chance to untangle Osler’s web. Sci. Transl. Med.16,eado2101(2024). DOI:10.1126/scitranslmed.ado2101

Confirmed: The Conclusion by NICE that CBT is not an Effective Treatment for ME/CFS; Re-Analysis of a Systematic Review

Abstract:

In this article, we analyzed the systematic review by Kuut et al. into the efficacy of cognitive behavioral therapy (CBT) for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a disease that predominantly affects women, and the eight trials
in it. We found many issues with the studies in the review, but also with the review itself.

For example, the systematic review by Kuut et al. included a researcher who was involved in seven of the eight studies in their review, and another one who was involved in five of them. Moreover, at least one of them was involved in every study in the review. On top of that, the three professors who were involved in the systematic review, have all built their career on the CB model and the reversibility of ME/CFS through CBT and GET and two of the systematic reviewers have a potential financial conflict of interest. Yet they failed to inform the readers about these conflicts of interest. Conducting a review in this manner and not informing the readers, undermines the credibility of a systematic review and its conclusion.

Regarding outcome differences between treatment and control group, it’s highly likely that the combination of non-blinded
trials, subjective outcomes and poorly chosen control groups, alone or together with response shift bias and/or patients filling in questionnaires in a manner to please the investigators, allegiance bias, small study effect bias and other forms of bias,
produced the appearance of positive effects, despite the lack of any substantial benefit to the patients, leading to the erroneous inference of efficacy in its absence. That CBT is not an effective treatment is highlighted by the fact that patients remained
severely disabled after treatment with it.

The absence of objective improvement as shown by the actometer, employment status and objective cognitive measures, confirms the inefficacy of CBT for ME/CFS. The systematic review did not report on safety but research by the Oxford Brookes University shows that CBT, which contains an element of graded exercise therapy, is harmful for many patients. Finally, our reanalysis highlights the fact that researchers should not mark their own homework.

Source: Vink M, Vink-Niese A. Confirmed: The Conclusion by NICE that CBT is not an Effective Treatment for ME/CFS; Re-Analysis of a Systematic Review. SciBase Neurol. 2024; 2(3): 1022. https://www.scibasejournals.org/neurology/1022.pdf (Full text)

Hypocapnic cerebral hypoperfusion: A biomarker of orthostatic intolerance

Abstract:

The objective of the study was to identify markers of hypocapnic cerebral hypoperfusion (HYCH) in patients with orthostatic intolerance (OI) without tachycardia and without orthostatic hypotension. This single center, retrospective study included OI patients referred for autonomic evaluation with the 10 min tilt test. Heart rate, end-tidal CO2 (ET-CO2), blood pressure, and cerebral blood flow velocity (CBFv) from middle cerebral artery were monitored. HYCH was defined by: (1) Symptoms of OI; (2) Orthostatic hypocapnia (low ET-CO2); (3) Abnormal decline in orthostatic CBFv due to hypocapnia; 4) Absence of tachycardia, orthostatic hypotension, or other causes of low CBFv or hypocapnia.

Sixteen subjects met HYCH criteria (15/1 women/men, age 38.5±8.0 years) and were matched by age and gender to postural tachycardia patients (POTS, n = 16) and healthy controls (n = 16). During the tilt, CBFv decreased more in HYCH (-22.4±7.7%, p<0.0001) and POTS (-19.0±10.3%, p<0.0001) compared to controls (-3.0±5.0%). Orthostatic ET-CO2 was lower in HYCH (26.4±4.2 (mmHg), p<0.0001) and POTS (28.6±4.3, p<0.0001) compared to controls (36.9 ± 2.1 mmHg). Orthostatic heart rate was normal in HYCH (89.0±10.9 (BPM), p<0.08) and controls (80.8 ±11.2), but was higher in POTS (123.7±11.2, p<0.0001). Blood pressure was normal and similar in all groups.

It is concluded that both HYCH and POTS patients have comparable decrease in CBFv which is due to vasoconstrictive effect of hypocapnia. Blood flow velocity monitoring can provide an objective biomarker for HYCH in OI patients without tachycardia.

Source: Novak P. Hypocapnic cerebral hypoperfusion: A biomarker of orthostatic intolerance. PLoS One. 2018 Sep 26;13(9):e0204419. doi: 10.1371/journal.pone.0204419. PMID: 30256820; PMCID: PMC6157889. https://pmc.ncbi.nlm.nih.gov/articles/PMC6157889/ (Full text)

Expanded autonomic testing helps to pinpoint cases of orthostatic intolerance

News:

Using expanded, state-of-the-art capabilities in autonomic testing, Peter Novak, MD, PhD, Chief of the Division of Autonomic Neurology in the Department of Neurology, is driving better understanding of hard-to-diagnose patients with orthostatic intolerance.

The debilitating condition is among the most common neurological conditions affecting women in the United States ages 35 or younger. While knowledge of orthostatic intolerance has become more nuanced in recent years, diagnosing some patients’ symptoms when changing from lying to standing (dizziness, weakness and shortness of breath, with or without rapid heartbeat) has remained elusive.

The identification of postural orthostatic tachycardia syndrome (POTS) in the early 1990s led to clearer diagnosis of many patients. But the syndrome, by definition, excludes those who do not experience tachycardia. To address their symptoms, these patients sometimes are prescribed antianxiety or antidepressant medications.

To better understand these patients, Dr. Novak turned to continuous monitoring of end tidal CO2 and CBFv (cerebral blood flow velocity). As the technologies became available for clinical use, Novak added them to routine testing. The results led him to identify two new syndromes relating to orthostatic dizziness.

“We can now diagnose people who were previously thought to have psychiatric illness or had no diagnosis at all,” says Dr. Novak, of the Department of Neurology, one of only a few departments in the United States that has a Division of Autonomic Neurology.

In addition to continuous monitoring of heart rate and blood pressure that is standard for Valsalva maneuver and tilt-table tests, Dr. Novak’s Autonomic Testing Lab, located at Brigham and Women’s Faulkner Hospital, also measures and interprets end tidal CO2 and CBFv during these tests. Through testing, he has characterized two new syndromes:

  • Hypocapnic cerebral hypoperfusion (HYCH) is a novel syndrome of low CBFv that Novak described in late 2018 in PLoS ONE, as a biomarker of orthostatic intolerance. HYCH can be detected during a tilt test, in patients without orthostatic tachycardia, hypotension, arrhythmia, vascular abnormalities or other causes of abnormal orthostatic CBFv. “This is POTS without the T,” explains Dr. Novak. “These people have normal BP and normal heart rate. But they have the same low blood flow as in POTS due to vasoconstrictive effect of hypocapnia (low end tidal CO2). This is the main reason to monitor blood flow. Otherwise you can miss what is going on with this the patient, and the patient could be misdiagnosed as having a psychiatric illness.” The Autonomic Testing Lab currently sees at last two patients each month who meet the criteria of HYCH. Treatment is similar to that of patients with POTS (combination of exercise, diet and medication for more severe cases), since HYCH and POTS are probably on a spectrum of the same disorder.
  • Orthostatic Cerebral Hypoperfusion Syndrome (OCHOS) is a syndrome of orthostatic intolerance associated with low CBFv that Dr. Novak first described in 2016. In this syndrome, the orthostatic cerebral blood flow is reduced while all other variables are normal. OCHOS can be disabling. Many patients respond to volume expansion or cerebral vasodilators, but the optimal therapy has yet to be found.

Both OCHOS and HYCH are described among the 100 case studies in Dr. Novak’s recently published book Autonomic Testing, (Oxford University Press, April 2019), intended as a practical manual for performing and interpreting autonomic testing. Each case study includes the testing evaluation, results (with visual images to guide test interpretations) and recommendations for treatment and follow-up. Nearly all cases show results of the newer techniques of continuous CBFv and CO2 monitoring concurrent with traditional heart rate and blood pressure testing. “Together, they are more valuable than separately,” Dr. Novak explains.

The combination of classic autonomic tests (Valsalva maneuver, deep breathing and tilt test) enhanced by using of continuous CBFv and CO2 monitoring together make up “the Brigham Protocol.” In addition, the protocol includes non-invasive skin biopsies, now routinely performed in the lab to assess direct small fiber damage, which may indicate inflammation that is treatable. “We call it autonomic testing, but it is more than that at our institution,” says Dr. Novak.

Since 2015, the Autonomic Testing Lab has performed autonomic testing on approximately 1,300 people, about half of them for orthostatic symptoms, says Dr. Novak.

For questions about autonomic testing or if you have a patient who would benefit from autonomic testing, learn more here.

The influence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) family history on patients with ME/CFS

Abstract:

Aim: It is unclear if individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with family histories of ME/CFS differ from those with ME/CFS without this family history. To explore this issue, quantitative data from patients with ME/CFS and controls were collected, and we examined those with and without family histories of ME/CFS.

Methods: The samples included 400 patients with ME/CFS, and a non-ME/CFS chronic illness control group of 241 patients with multiple sclerosis (MS) and 173 with post-polio syndrome (PPS).

Results: Confirming findings from prior studies, those with ME/CFS were more likely to have family members with ME/CFS than controls. We found family histories of ME/CFS were significantly higher (18%) among the ME/CFS group than the non-ME/CFS controls (3.9%). In addition, patients with ME/CFS who had family histories of ME/CFS were more likely to have gastrointestinal symptoms than those with ME/CFS without those family histories.

Conclusions: Given the recent reports of gastrointestinal difficulties among those with ME/CFS, our findings might represent one predisposing factor for the emergence of ME/CFS.

Source: Jason LA, Ngonmedje S. The influence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) family history on patients with ME/CFS. Explor Med. 2024;5(2):185-192. doi: 10.37349/emed.2024.00215. Epub 2024 Apr 11. PMID: 39502189; PMCID: PMC11537498. https://pmc.ncbi.nlm.nih.gov/articles/PMC11537498/ (Full text)

Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome

Abstract:

Background: The Stroop task was used to investigate differences in cognitive function between Long COVID (LC), Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and healthy control subjects.

Methods: Subjects viewed four color words or neutral (XXXX) stimuli with the same (congruent) or different color ink (incongruent). Cognitive conflict was inferred from response times for pairings of prestimuli and subsequent stimuli. Overall effects were assessed by univariate analysis with time courses determined for binned response times.

Results: LC and ME/CFS had significantly longer response times than controls indicating cognitive dysfunction. Initial response times were ranked LC > ME > HC, and decreased according to power functions. At the end of the task (900s), times were ranked LC = ME > HC. Response times were significantly slower for stimuli following an incongruent prestimulus. Time series for Stroop effect, facilitation, interference, surprise index and practice power law parameters were generally similar in LC, ME/CFS and HC suggesting comparable patterns for recruitment of cognitive resources. The prestimulus data were analyzed and generated positive Stroop and interference effects that were distinct from stimulus effects.

Conclusion: LC and ME/CFS have global slowing of response times that cannot be overcome by practice suggesting impaired communications between network nodes during problem solving. Analysis of matched prestimulus – stimulus effects adds a new dimension for understanding cognitive conflict.

Brief summary: Cognitive dysfunction in Long COVID and ME/CFS was demonstrated using the Stroop task which found global slowing of response times and limitations of practice effects.

Source: Baraniuk JN, Thapaliya K, Inderyas M, Shan ZY, Barnden LR. Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome. Sci Rep. 2024 Nov 5;14(1):26796. doi: 10.1038/s41598-024-75651-3. PMID: 39500939; PMCID: PMC11538523. https://pmc.ncbi.nlm.nih.gov/articles/PMC11538523/ (Full text)

Web-based telemedicine approach for treatment of post-COVID-19 in Thuringia (WATCH)

Abstract:

Objective: After infection with SARS-CoV-2, a substantial proportion of patients develop long-lasting sequelae. These sequelae include fatigue (potentially as severe as that seen in ME/CFS cases), cognitive dysfunction, and psychiatric symptoms. Because the pathophysiology of these sequelae remains unclear, existing therapeutic concepts address the symptoms through pacing strategies, cognitive training, and psychological therapy.

Methods: Here, we present a protocol for a digital multimodal structured intervention addressing common symptoms through three intervention modules: BRAIN, BODY, and SOUL. This intervention includes an assessment conducted via a mobile “post-COVID-19 bus” near the patient’s home, as well as the use of wearable devices and mobile applications to support pacing strategies and collection of data, including ecological momentary assessment.

Results: We will focus on physical component subscore of the SF36 as Quality of Life parameter as the primary outcome parameter for WATCH to take into account the holistic approach that is necessary for care of post-COVID patients.

Conclusion: In the current project, we present a protocol for a holistic and multimodal structured therapeutic concept which is easily accessible, and scalable for post-COVID patients.

Source: Reuken PA, Besteher B, Bleidorn J, Brockmann D, Finke K, Freytag A, Lehmann-Pohl K, Lemhöfer C, Mikolajczyk R, Puta C, Scherag A, Wiedermann M, Zippel-Schultz B, Stallmach A. Web-based telemedicine approach for treatment of post-COVID-19 in Thuringia (WATCH). Digit Health. 2024 Oct 14;10:20552076241291748. doi: 10.1177/20552076241291748. PMID: 39493638; PMCID: PMC11528766. https://pmc.ncbi.nlm.nih.gov/articles/PMC11528766/ (Full text)