Increased nuclear factor-κB and loss of p53 are key mechanisms in Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

Fukuda’s criteria are adequate to make a distinction between Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS) and chronic fatigue (CF), but ME/CFS patients should be subdivided into those with (termed ME) and without (termed CFS) post exertional malaise [Maes et al. 2012].

ME/CFS is considered to be a neuro-immune disease. ME/CFS is characterized by activated immuno-inflammatory pathways, including increased levels of pro-inflammatory cytokines, nuclear factor κB (NF-κB) and aberrations in mitochondrial functions, including lowered ATP. These processes may explain typical symptoms of ME/CFS, e.g. fatigue, malaise, hyperalgesia, and neurologic and autonomic symptoms.

Here we hypothesize that increased NF-κB together with a loss of p53 are key phenomena in ME/CFS that further explain ME/CFS symptoms, such as fatigue and neurocognitive dysfunction, and explain ME symptoms, such as post-exertional malaise following mental and physical activities. Inactivation of p53 impairs aerobic mitochondrial functions and causes greater dependence on anaerobic glycolysis, elevates lactate levels, reduces mitochondrial density in skeletal muscle and reduces endurance during physical exercise. Lowered p53 and increased NF-κB are associated with elevated reactive oxygen species. Increased NF-κB induces the production of pro-inflammatory cytokines, which increase glycolysis and further compromise mitochondrial functions.

All these factors together may contribute to mitochondrial exhaustion and indicate that the demand for extra ATP upon the commencement of increased activity cannot be met. In conditions of chronic inflammation and oxidative stress, high NF-κB and low p53 may conspire to promote neuron and glial cell survival at a price of severely compromised metabolic brain function. Future research should examine p53 signaling in ME/CFS.

Copyright © 2012. Published by Elsevier Ltd.

 

Source: Morris G, Maes M. Increased nuclear factor-κB and loss of p53 are key mechanisms in Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses. 2012 Nov;79(5):607-13. doi: 10.1016/j.mehy.2012.07.034. Epub 2012 Aug 27. https://www.ncbi.nlm.nih.gov/pubmed/22951418

 

Orthostatic tolerance testing in a prospective cohort of adolescents with chronic fatigue syndrome and recovered controls following infectious mononucleosis

Abstract:

Chronic fatigue syndrome (CFS) is a complex condition responsible for marked functional impairment. The authors recently reported that 6 months following acute infectious mononucleosis (IM), 13%, of adolescents met criteria for CFS. The authors’ objective was to assess standing orthostatic tolerance (SOT) in adolescents with CFS and in controls 6 months following IM.

In all, 36 of 39 adolescents diagnosed with CFS 6 months following IM and 43 of 50 recovered controls had SOT testing (SOTT) performed. χ(2) Analysis was performed to study the relationships between SOTT and the diagnosis of CFS. Adolescents diagnosed with CFS and recovered controls did not differ significantly in age, weight, or body mass index. The authors found that 9 of 36 adolescents with CFS (25%) versus 9 of 43 recovered controls (21%) had an abnormal SOTT, which was not a statistically significant difference. Adolescents who meet criteria for CFS 6 months following IM do not have, as a group, more standing orthostatic intolerance than recovered controls.

 

Source: Katz BZ, Stewart JM, Shiraishi Y, Mears CJ, Taylor R. Orthostatic tolerance testing in a prospective cohort of adolescents with chronic fatigue syndrome and recovered controls following infectious mononucleosis. Clin Pediatr (Phila). 2012 Sep;51(9):835-9. doi: 10.1177/0009922812455094. Epub 2012 Jul 31. https://www.ncbi.nlm.nih.gov/pubmed/22850676

 

Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

The objectives of this study are to test the hypothesis that the fatigue and accompanying symptoms of Chronic Myalgic Encephalomyelitis/Fatigue Syndrome are in part due to defects in energy provision at the cellular level, and to understand the pathophysiology of the defects so that effective medical intervention can be implemented.

We performed an audit of 138 patients (ages 18-65) diagnosed with ME/CFS and attending a private practice. The patients and 53 normal, healthy controls had the ATP Profile test carried out on neutrophils from a 3-ml venous blood sample. This test yields 6 numerical factors that describe the availability of ATP and the efficiency of oxidative phosphorylation in mitochondria. Other biomedical measurements, including the concentration of cell-free DNA in plasma, were made. The results of the audit are compared with the controls and a previous cohort of 61 patients. We find that all patients tested have measureable mitochondrial dysfunction which correlates with the severity of the illness.

The patients divide into two main groups differentiated by how cellular metabolism attempts to compensate for the dysfunction. Comparisons with exercise studies suggest that the dysfunction in neutrophils also occurs in other cells. This is confirmed by the cell-free DNA measurements which indicate levels of tissue damage up to 3.5 times the normal reference range. The major immediate causes of the dysfunction are lack of essential substrates and partial blocking of the translocator protein sites in mitochondria. The ATP Profile is a valuable diagnostic tool for the clinical management of ME/CFS.

 

Source: Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208-20. Epub 2012 Jun 15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403556/ (Full article)

 

A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome

Abstract:

This paper proposes a neuro-immune model for Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). A wide range of immunological and neurological abnormalities have been reported in people suffering from ME/CFS. They include abnormalities in proinflammatory cytokines, raised production of nuclear factor-κB, mitochondrial dysfunctions, autoimmune responses, autonomic disturbances and brain pathology. Raised levels of oxidative and nitrosative stress (O&NS), together with reduced levels of antioxidants are indicative of an immuno-inflammatory pathology. A number of different pathogens have been reported either as triggering or maintaining factors.

Our model proposes that initial infection and immune activation caused by a number of possible pathogens leads to a state of chronic peripheral immune activation driven by activated O&NS pathways that lead to progressive damage of self epitopes even when the initial infection has been cleared. Subsequent activation of autoreactive T cells conspiring with O&NS pathways cause further damage and provoke chronic activation of immuno-inflammatory pathways. The subsequent upregulation of proinflammatory compounds may activate microglia via the vagus nerve.

Elevated proinflammatory cytokines together with raised O&NS conspire to produce mitochondrial damage. The subsequent ATP deficit together with inflammation and O&NS are responsible for the landmark symptoms of ME/CFS, including post-exertional malaise. Raised levels of O&NS subsequently cause progressive elevation of autoimmune activity facilitated by molecular mimicry, bystander activation or epitope spreading. These processes provoke central nervous system (CNS) activation in an attempt to restore immune homeostatsis.

This model proposes that the antagonistic activities of the CNS response to peripheral inflammation, O&NS and chronic immune activation are responsible for the remitting-relapsing nature of ME/CFS. Leads for future research are suggested based on this neuro-immune model.

 

Source: Morris G, Maes M. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab Brain Dis. 2013 Dec;28(4):523-40. doi: 10.1007/s11011-012-9324-8. Epub 2012 Jun 21. https://www.ncbi.nlm.nih.gov/pubmed/22718491

 

Linking disease symptoms and subtypes with personalized systems-based phenotypes: a proof of concept study

Abstract:

A dynamic systems model was used to generate parameters describing a phenotype of Hypothalamic-Pituitary-Adrenal (HPA) behavior in a sample of 36 patients with chronic fatigue syndrome (CFS) and/or fibromyalgia (FM) and 36 case-matched healthy controls. Altered neuroendocrine function, particularly in relation to somatic symptoms and poor sleep quality, may contribute to the pathophysiology of these disorders.

Blood plasma was assayed for cortisol and ACTH every 10 min for 24h. The dynamic model was specified with an ordinary differential equation using three parameters: (1) ACTH-adrenal signaling, (2) inhibitory feedback, and (3) non-ACTH influences. The model was “personalized” by estimating an individualized set of parameters from each participant’s data. Day and nighttime parameters were assessed separately.

Two nocturnal parameters (ACTH-adrenal signaling and inhibitory feedback) significantly differentiated the two patient subgroups (“fatigue-predominant” patients with CFS only versus “pain-predominant” patients with FM and comorbid chronic fatigue) from controls (all p’s<.05), whereas daytime parameters and diurnal/nocturnal slopes did not. The same nocturnal parameters were significantly associated with somatic symptoms among patients (p’s<.05). There was a significantly different pattern of association between nocturnal non-ACTH influences and sleep quality among patients versus controls (p<.05).

Although speculative, the finding that patient somatic symptoms decreased when more cortisol was produced per unit ACTH, is consistent with cortisol’s anti-inflammatory and sleep-modulatory effects. Patients’ HPA systems may compensate by promoting more rapid or sustained cortisol production. Mapping “behavioral phenotypes” of stress-arousal systems onto symptom clusters may help disentangle the pathophysiology of complex disorders with frequent comorbidity.

Copyright © 2012 Elsevier Inc. All rights reserved.

Comment in: A moving target: taking aim at the regulatory dynamics of illness. [Brain Behav Immun. 2012]

 

Source: Aschbacher K, Adam EK, Crofford LJ, Kemeny ME, Demitrack MA, Ben-Zvi A. Linking disease symptoms and subtypes with personalized systems-based phenotypes: a proof of concept study. Brain Behav Immun. 2012 Oct;26(7):1047-56. doi: 10.1016/j.bbi.2012.06.002. Epub 2012 Jun 9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725324/ (Full article)

 

IgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depression

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and depression are considered to be neuro-immune disorders (Maes and Twisk, BMC Medicine 8:35, 2010). There is also evidence that depression and ME/CFS are accompanied by oxidative and nitrosative stress (O&NS) and by increased autoantibodies to a number of self-epitopes some of which have become immunogenic due to damage by O&NS. The aim of this study is to examine IgM-mediated autoimmune responses to different self-epitopes in ME/CFS versus depression.

We examined serum IgM antibodies to three anchorage molecules (palmitic and myristic acid and S-farnesyl-L-cysteine); acetylcholine; and conjugated NO-modified adducts in 26 patients with major depression; 16 patients with ME/CFS, 15 with chronic fatigue; and 17 normal controls. Severity of fatigue and physio-somatic (F&S) symptoms was measured with the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale.

Serum IgM antibodies to the three anchorage molecules and NO-phenylalanine were significantly higher in ME/CFS than in depression. The autoimmune responses to oxidatively, but not nitrosatively, modified self-epitopes were significantly higher in ME/CFS than in depression and were associated with F&S symptoms. The autoimmune activity directed against conjugated acetylcholine did not differ significantly between ME/CFS and depression, but was greater in the patients than controls.

Partially overlapping pathways, i.e. increased IgM antibodies to a multitude of neo-epitopes, underpin both ME/CFS and depression, while greater autoimmune responses directed against anchorage molecules and oxidatively modified neo-epitopes discriminate patients with ME/CFS from those with depression. These autoimmune responses directed against neoantigenic determinants may play a role in the dysregulation of key cellular functions in both disorders, e.g. intracellular signal transduction, cellular differentiation and apoptosis, but their impact may be more important in ME/CFS than in depression.

 

Source: Maes M, Mihaylova I, Kubera M, Leunis JC, Twisk FN, Geffard M. IgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depression. Metab Brain Dis. 2012 Dec;27(4):415-23. doi: 10.1007/s11011-012-9316-8. Epub 2012 May 22. https://www.ncbi.nlm.nih.gov/pubmed/22614823

 

Inflammatory fatigue and sickness behaviour – lessons for the diagnosis and management of chronic fatigue syndrome

Abstract:

Persistent and severe fatigue is a common part of the presentation of a diverse range of disease processes. There is a growing body of evidence indicating a common inflammatory pathophysiology underlying many conditions where fatigue is a primary patient concern, including chronic fatigue syndrome. This review explores current models of how inflammatory mediators act on the central nervous system to produce fatigue and sickness behaviour, and the commonality of these processes in conditions as diverse as surgical trauma, infection, various cancers, inflammatory bowel disease, connective tissue diseases and autoimmune diseases. We also discuss evidence indicating chronic fatigue syndrome may have important pathophysiological similarities with cytokine mediated sickness behaviour, and what lessons can be applied from sickness behaviour to chronic fatigue syndrome with regards to the diagnosis and management.

Copyright © 2012 Elsevier B.V. All rights reserved.

 

Source: Arnett SV, Clark IA. Inflammatory fatigue and sickness behaviour – lessons for the diagnosis and management of chronic fatigue syndrome. J Affect Disord. 2012 Dec 10;141(2-3):130-42. doi: 10.1016/j.jad.2012.04.004. Epub 2012 May 11. https://www.ncbi.nlm.nih.gov/pubmed/22578888

 

Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Abstract:

BACKGROUND: Immune dysfunction associated with a disease often has a molecular basis. A novel group of molecules known as microRNAs (miRNAs) have been associated with suppression of translational processes involved in cellular development and proliferation, protein secretion, apoptosis, immune function and inflammatory processes. MicroRNAs may be implicated in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME), where immune function is impaired. The objective of this study was to determine the association between miRNAs in cytotoxic cells and CFS/ME.

METHODS: Natural Killer (NK) and CD8(+)T cells were preferentially isolated from peripheral blood mononuclear cells from all participants (CFS/ME, n=28; mean age=41.8±9.6 years and controls, n=28; mean age=45.3±11.7 years), via negative cell enrichment. Following total RNA extraction and subsequent synthesis of cDNA, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression levels of nineteen miRNAs.

RESULTS: There was a significant reduction in the expression levels of miR-21, in both the NK and CD8(+)T cells in the CFS/ME sufferers. Additionally, the expression of miR-17-5p, miR-10a, miR-103, miR-152, miR-146a, miR-106, miR-223 and miR-191 was significantly decreased in NK cells of CFS/ME patients in comparison to the non-fatigued controls.

LIMITATIONS: The results from these investigations are not yet transferable into the clinical setting, further validatory studies are now required.

CONCLUSIONS: Collectively these miRNAs have been associated with apoptosis, cell cycle, development and immune function. Changes in miRNAs in cytotoxic cells may reduce the functional capacity of these cells and disrupt effective cytotoxic activity along with other immune functions in CFS/ME patients.

Copyright © 2012 Elsevier B.V. All rights reserved.

 

Source: Brenu EW, Ashton KJ, van Driel M, Staines DR, Peterson D, Atkinson GM, Marshall-Gradisnik SM. Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Affect Disord. 2012 Dec 10;141(2-3):261-9. doi: 10.1016/j.jad.2012.03.037. Epub 2012 May 8. https://www.ncbi.nlm.nih.gov/pubmed/22572093

 

The assessment of the energy metabolism in patients with chronic fatigue syndrome by serum fluorescence emission

Abstract:

CONTEXT: Chronic fatigue syndrome (CFS) is a debilitating fatigue illness that has unknown etiology and lacks an objective diagnostic marker.

OBJECTIVE: To examine the metabolic component of CFS to determine if practitioners can use serum NAD(P)H concentration measurements to monitor metabolism and fatigue status in patients with CFS.

DESIGN: The research team conducted a case-control study, comparing a group of patients who were diagnosed with CFS with a control group of healthy subjects. The team obtained venous blood samples from fasting patients to examine the serum NAD(P)H concentrations.

SETTING: The study occurred at the Riordan Clinic in Witchita, Kansas.

PARTICIPANTS: The study included 44 CFS patients at the Riordan Clinic and 30 healthy control participants. The CFS patients presented a spectrum of symptoms that had existed for at least 6 months: new, unexplained, persistent, or relapsing chronic fatigue that bed rest did not resolve and that was severe enough to reduce daily activity significantly by 50% in conjunction with headache, muscle pain, pain in multiple joints, and unrefreshing sleep. In the control group, the research team enrolled subjects without diagnosis of disease or injury.

OUTCOME MEASURES: The research team determined levels of serum reduced nicotinamide adenine dinucleotides (NADH and NAD[P]H) by measuring serum fluorescence emission at 450 nm. The team then conducted sensitivity and specificity analyses. Results NAD(P)H concentrations in serum of CFS participants averaged 8.0 ± 1.4 (standard deviation [SD]) nmol/mL, while those in the healthy controls averaged 10.8 ± 0.8 (SD) nmol/mL, a statistically significant difference. Using a cut-off concentration of 9.5 nmol/mL, the research team attained a sensitivity of 0.73 and a specificity of 1.0. An analysis of receiver-operator characteristics yielded an area under the curve of 0.9. The research team compared serum NAD(P)H to several endocrine and metabolic lab parameters. Serum NAD(P)H was directly correlated with serum CoQ10 levels and inversely correlated with urine hydroxyhemopyrrolin-2-one levels.

CONCLUSIONS: Based on these findings, the research team proposed using serum NAD(P)H, measured as an intrinsic serum-fluorescence emission, to monitor metabolism and fatigue status in patients with CFS. Following patients NAD(P)H levels over time may aid in selecting therapeutic strategies and monitoring treatment outcomes.

 

Source: Mikirova N, Casciari J, Hunninghake R. The assessment of the energy metabolism in patients with chronic fatigue syndrome by serum fluorescence emission. Altern Ther Health Med. 2012 Jan-Feb;18(1):36-40. https://www.ncbi.nlm.nih.gov/pubmed/22516851

 

Kynurenine pathway Hypothesis: The nature of the chronic Fatigue syndrome (cFs) Revisited

Moderate physicians consider CFS to be missed diagnoses of uncommon illnesses with atypical features. Hartnup (heterozygotes), Lyme and Whipples—like diseases are examples of conditions which fit these clinical ambiguities. The detractors claim it is non-existent. The protractors complain CFS is excluded from standard medical texts. A broad overview of medical literature and support group newsletters, render these opposing views substantially incorrect.

The patient presents with a confounding array of neurological, mental, gastrointestinal, musculoskeletal and perhaps dermatological and visual signs and symptoms. Episodic night sweats can also be reported. Lack of energy, concentration and mobility, limit lifestyle. These symptom constellations evolve and fluctuate in a seemingly random order and can become entrenched. Alcohol intake, protracted steroid therapy and overt or latent infections usually aggravate the course of CFS.

You can read the rest of this article here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195222/

 

Source: Blankfield A. Kynurenine pathway Hypothesis: The nature of the Chronic Fatigue Syndrome (CFS) Revisited. Int J Tryptophan Res. 2011;4:47-8. doi: 10.4137/IJTR.S7898. Epub 2011 Jul 31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195222/ (Full article)