Can the light of immunometabolism cut through “brain fog”?

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a highly debilitating disease with heterogeneous constitutional and neurological complaints. Infection-like symptoms often herald disease onset, but no pathogen or immune defect has been conclusively linked.

In this issue of the JCI, Mandarano et al. illuminate bioenergetic derangements of ME/CFS T cell subsets. CD4+ and CD8+ T cells had impaired resting glycolysis. CD8+ cells additionally showed activation-related metabolic remodeling deficits and decreased mitochondrial membrane potential; a subset had increased resting mitochondrial mass. Immune senescence and exhaustion paradigms offer only partial explanations. Hence, unique mechanisms of disrupted immunometabolism may underlie the complex neuroimmune dysfunction of ME/CFS.

Source: Hornig M. Can the light of immunometabolism cut through “brain fog”? J Clin Invest. 2020 Feb 10. pii: 134985. doi: 10.1172/JCI134985. [Epub ahead of print] https://www.jci.org/articles/view/134985

A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome

Abstract:

This paper proposes a neuro-immune model for Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). A wide range of immunological and neurological abnormalities have been reported in people suffering from ME/CFS. They include abnormalities in proinflammatory cytokines, raised production of nuclear factor-κB, mitochondrial dysfunctions, autoimmune responses, autonomic disturbances and brain pathology. Raised levels of oxidative and nitrosative stress (O&NS), together with reduced levels of antioxidants are indicative of an immuno-inflammatory pathology. A number of different pathogens have been reported either as triggering or maintaining factors.

Our model proposes that initial infection and immune activation caused by a number of possible pathogens leads to a state of chronic peripheral immune activation driven by activated O&NS pathways that lead to progressive damage of self epitopes even when the initial infection has been cleared. Subsequent activation of autoreactive T cells conspiring with O&NS pathways cause further damage and provoke chronic activation of immuno-inflammatory pathways. The subsequent upregulation of proinflammatory compounds may activate microglia via the vagus nerve.

Elevated proinflammatory cytokines together with raised O&NS conspire to produce mitochondrial damage. The subsequent ATP deficit together with inflammation and O&NS are responsible for the landmark symptoms of ME/CFS, including post-exertional malaise. Raised levels of O&NS subsequently cause progressive elevation of autoimmune activity facilitated by molecular mimicry, bystander activation or epitope spreading. These processes provoke central nervous system (CNS) activation in an attempt to restore immune homeostatsis.

This model proposes that the antagonistic activities of the CNS response to peripheral inflammation, O&NS and chronic immune activation are responsible for the remitting-relapsing nature of ME/CFS. Leads for future research are suggested based on this neuro-immune model.

 

Source: Morris G, Maes M. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab Brain Dis. 2013 Dec;28(4):523-40. doi: 10.1007/s11011-012-9324-8. Epub 2012 Jun 21. https://www.ncbi.nlm.nih.gov/pubmed/22718491

 

Sleep, neuroimmune and neuroendocrine functions in fibromyalgia and chronic fatigue syndrome

Abstract:

The justification for disordered chronobiology for fibromyalgia and chronic fatigue syndrome (CFS) is based on the following evidence: The studies on disordered sleep physiology and the symptoms of fibromyalgia and CFS; the experimental studies that draw a link between interleukin-1 (IL-1), immune-neuroendocrine-thermal systems and the sleep-wake cycle; studies and preliminary data of the inter-relationships of sleep-wakefulness, IL-1, and aspects of peripheral immune and neuroendocrine functions in healthy men and in women during differing phases of the menstrual cycle; and the observations of alterations in the immune-neuroendocrine functions of patients with fibromyalgia and CFS (Moldofsky, 1993b, d). Time series analyses of measures of the circadian pattern of the sleep-wake behavioural system, immune, neuroendocrine and temperature functions in patients with fibromyalgia and CFS should determine whether alterations of aspects of the neuro-immune-endocrine systems that accompany disordered sleep physiology result in nonrestorative sleep, pain, fatigue, cognitive and mood symptoms in patients with fibromyalgia and CFS.

 

Source: Moldofsky H. Sleep, neuroimmune and neuroendocrine functions in fibromyalgia and chronic fatigue syndrome. Adv Neuroimmunol. 1995;5(1):39-56. http://www.ncbi.nlm.nih.gov/pubmed/7795892