Maximal oxidative capacity during exercise is associated with muscle power output in patients with long coronavirus disease 2019 (COVID-19) syndrome. A moderation analysis

Abstract:

Background & aims: Long COVID syndrome (LCS) involves persistent symptoms experienced by many patients after recovering from coronavirus disease 2019 (COVID-19). We aimed to assess skeletal muscle energy metabolism, which is closely related to substrate oxidation rates during exercise, in patients with LCS compared with healthy controls. We also examined whether muscle power output mediates the relationship between COVID-19 and skeletal muscle energy metabolism.

Methods: In this cross-sectional study, we enrolled 71 patients with LCS and 63 healthy controls. We assessed clinical characteristics such as body composition, physical activity, and muscle strength. We used cardiopulmonary exercise testing to evaluate substrate oxidation rates during graded exercise. We performed statistical analyses to compare group characteristics and peak fat oxidation differences based on power output.

Results: The two-way analysis of covariance (ANCOVA) results, adjusted for covariates, showed that the patients with LCS had lower absolute maximal fatty acid oxidation (MFO), relative MFO/fat free mass (FFM), absolute carbohydrates oxidation (CHox), relative CHox/FFM, and oxygen uptake (V˙˙O2) at maximum fat oxidation (g min-1) than the healthy controls (P < 0.05). Moderation analysis indicated that muscle power output significantly influenced the relationship between LCS and reduced peak fat oxidation (interaction β = -0.105 [95% confidence interval -0.174; -0.036]; P = 0.026). Therefore, when muscle power output was below 388 W, the effect of the LCS on MFO was significant (62% in our study sample P = 0.010). These findings suggest compromised mitochondrial bioenergetics and muscle function, represented by lower peak fat oxidation rates, in the patients with LCS compared with the healthy controls.

Conclusion: The patients with LCS had lower peak fat oxidation during exercise compared with the healthy controls, potentially indicating impairment in skeletal muscle function. The relationship between peak fat oxidation and LCS appears to be mediated predominantly by muscle power output. Additional research should continue investigating LCS pathogenesis and the functional role of mitochondria.

Source: Ramírez-Vélez R, Oscoz-Ochandorena S, García-Alonso Y, García-Alonso N, Legarra-Gorgoñon G, Oteiza J, Lorea AE, Izquierdo M, Correa-Rodríguez M. Maximal oxidative capacity during exercise is associated with muscle power output in patients with long coronavirus disease 2019 (COVID-19) syndrome. A moderation analysis. Clin Nutr ESPEN. 2023 Dec;58:253-262. doi: 10.1016/j.clnesp.2023.10.009. Epub 2023 Oct 14. PMID: 38057014. https://clinicalnutritionespen.com/article/S2405-4577(23)02166-6/fulltext (Full text)

Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression

Abstract:

Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection and compared them with influenza A virus (IAV) and mock infections.

Histopathological and bulk RNA sequencing analyses of leg muscles derived from infected animals at days 3, 30, and 60 post-infection showed no direct viral invasion but myofiber atrophy in the SARS-CoV-2 group, which was accompanied by persistent downregulation of the genes related to myofibers, ribosomal proteins, fatty acid β-oxidation, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation complexes.

While both SARS-CoV-2 and IAV infections induced acute and transient type I and II interferon responses in muscle, only the SARS-CoV-2 infection upregulated TNF-α/NF-κB but not IL-6 signaling in muscle. Treatment of C2C12 myotubes, a skeletal muscle cell line, with combined IFN-γ and TNF-α but not with IFN-γ or TNF-α alone markedly impaired mitochondrial function.

We conclude that a respiratory SARS-CoV-2 infection can cause myofiber atrophy and persistent energy metabolism suppression without direct viral invasion. The effects may be induced by the combined systemic interferon and TNF-α responses at the acute phase and may contribute to post-COVID-19 persistent muscle fatigue.

Source: Homma ST, Wang X, Frere JJ, Gower AC, Zhou J, Lim JK, tenOever BR, Zhou L. Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression. Biomedicines. 2024 Jun 28;12(7):1443. doi: 10.3390/biomedicines12071443. PMID: 39062017; PMCID: PMC11275164. https://pmc.ncbi.nlm.nih.gov/articles/PMC11275164/ (Full text)

Persistent Fatigue, Weakness, and Aberrant Muscle Mitochondria in Survivors of Critical COVID-19

Abstract:

Objectives: Persistent skeletal muscle dysfunction in survivors of critical illness due to acute respiratory failure is common, but biological data elucidating underlying mechanisms are limited. The objective of this study was to elucidate the prevalence of skeletal muscle weakness and fatigue in survivors of critical illness due to COVID-19 and determine if cellular changes associate with persistent skeletal muscle dysfunction.

Design: A prospective observational study in two phases: 1) survivors of critical COVID-19 participating in physical outcome measures while attending an ICU Recovery Clinic at short-term follow-up and 2) a nested cohort of patients performed comprehensive muscle and physical function assessments with a muscle biopsy; data were compared with non-COVID controls.

Setting: ICU Recovery Clinic and clinical laboratory.

Patients/subjects: Survivors of critical COVID-19 and non-COVID controls.

Interventions: None.

Measurements and main results: One hundred twenty patients with a median of 56 years old (interquartile range [IQR], 42-65 yr old), 43% female, and 33% individuals of underrepresented race attended follow-up 44 ± 17 days after discharge. Patients had a median Acute Physiology and Chronic Health Evaluation-II score of 24.0 (IQR, 16-29) and 98 patients (82%) required mechanical ventilation with a median duration of 14 days (IQR, 9-21 d). At short-term follow-up significant physical dysfunction was observed with 93% of patients reporting generalized fatigue and performing mean 218 ± 151 meters on 6-minute walk test (45% ± 30% of predicted). Eleven patients from this group agreed to participate in long-term assessment and muscle biopsy occurring a mean 267 ± 98 days after discharge. Muscle tissue from COVID exhibited a greater abundance of M2-like macrophages and satellite cells and lower activity of mitochondrial complex II and complex IV compared with controls.

Conclusions: Our findings suggest that aberrant repair and altered mitochondrial activity in skeletal muscle associates with long-term impairments in patients surviving an ICU admission for COVID-19.

Source: Mayer KP, Ismaeel A, Kalema AG, Montgomery-Yates AA, Soper MK, Kern PA, Starck JD, Slone SA, Morris PE, Dupont-Versteegden EE, Kosmac K. Persistent Fatigue, Weakness, and Aberrant Muscle Mitochondria in Survivors of Critical COVID-19. Crit Care Explor. 2024 Oct 16;6(10):e1164. doi: 10.1097/CCE.0000000000001164. PMID: 39412208; PMCID: PMC11487221. https://pmc.ncbi.nlm.nih.gov/articles/PMC11487221/ (Full text)

Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review

Abstract:

Background: Up to 30% of people infected with SARS-CoV-2 report disabling symptoms 2 years after the infection. Over 100 persistent symptoms have been associated with Post-Acute COVID-19 Symptoms (PACS) and/or long-COVID, showing a significant clinical heterogeneity. To develop effective, patient-targeted treatment, a better understanding of underlying mechanisms is needed. Epigenetics has helped elucidating the pathophysiology of several health conditions and it might help unravelling inter-individual differences in patients with PACS and long-COVID. As accumulating research is exploring epigenetic mechanisms in PACS and long-COVID, we systematically summarized the available literature on the topic.

Methods: We interrogated five databases (Medline, Embase, Web of Science, Scopus and medXriv/bioXriv) and followed PRISMA and SWiM guidelines to report our results.

Results: Eight studies were included in our review. Six studies explored DNA methylation in PACS and/or long-COVID, while two studies explored miRNA expression in long-COVID associated with lung complications. Sample sizes were mostly small and study quality was low or fair. The main limitation of the included studies was a poor characterization of the patient population that made a homogeneous synthesis of the literature challenging. However, studies on DNA methylation showed that mechanisms related to the immune and the autonomic nervous system, and cell metabolism might be implicated in the pathophysiology of PACS and long-COVID.

Conclusion: Epigenetic changes might help elucidating PACS and long-COVID underlying mechanisms, aid subgrouping, and point towards tailored treatments. Preliminary evidence is promising but scarce. Biological and epigenetic research on long-COVID will benefit millions of people suffering from long-COVID and has the potential to be transferable and benefit other conditions as well, such as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We urge future research to employ longitudinal designs and provide a better characterization of included patients.

Source: Shekhar Patil M, Richter E, Fanning L, Hendrix J, Wyns A, Barrero Santiago L, Nijs J, Godderis L, Polli A. Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review. Expert Rev Mol Med. 2024 Oct 22;26:e29. doi: 10.1017/erm.2024.32. PMID: 39435694. https://www.cambridge.org/core/journals/expert-reviews-in-molecular-medicine/article/epigenetic-changes-in-patients-with-postacute-covid19-symptoms-pacs-and-longcovid-a-systematic-review/BCF992CF0E491FC0AD0FEDC3A8AFFD4B (Full text)

Assessment of the therapeutic potential of salubrinal for ME/CFS and long-COVID

Highlights:

  • Long-COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are enigmatic diseases sharing many characteristics.
  • The most debilitating aspects of these diseases are cognitive dysfunction, ‘brain fog’, and exercise intolerance, ‘post-exertional malaise’.
  • There is no cure for these diseases; treatment is palliative only.
  • Mitochondrial dysfunction with endoplasmic reticulum (ER) stress occurs in both diseases.
  • Salubrinal inhibits the phosphatase that dephosphorylates phospho-eukaryotic initiation factor-2α (peIF2α), a protective protein for cells undergoing ER stress when phosphorylated.
  • Salubrinal reduces the formation of Wiskott–Aldrich syndrome protein family member 3 (WASF3), a protein that causes mitochondrial dysfunction that is overexpressed in a cohort of ME/CFS patients.
  • Salubrinal reduces WASF3 expression, restoring mitochondrial function in fibroblasts of a patient with ME/CFS.

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating condition with no cure that shares commonality with long-COVID.

This review examines current understanding of long-COVID symptoms, characteristics of the affected population, the connection with ME/CFS, and the potential for salubrinal, an agent known for its influence on cellular stress pathways, to mitigate these disorders.

It also describes the historical development and mechanism of action of salubrinal, to mitigate endoplasmic reticulum (ER)/cellular stress responses, that could potentially contribute to symptom improvement in both ME/CFS and long-COVID patients.

Further research and clinical trials are warranted to advance our understanding of the potential role of salubrinal in improving the quality of life for individuals with long-COVID-related ME/CFS symptoms as well as ME/CFS patients.

Source: Aseel Warrayat, Ayah Ali, Joulin Waked, Darcy Tocci, Robert C. Speth. Assessment of the therapeutic potential of salubrinal for ME/CFS and long-COVID. Trends in Molecular Medicine, 2024. ISSN 1471-4914, https://doi.org/10.1016/j.molmed.2024.10.001. https://www.sciencedirect.com/science/article/abs/pii/S1471491424002685

Immune exhaustion in ME/CFS and long COVID

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID are debilitating multisystemic conditions sharing similarities in immune dysregulation and cellular signaling pathways contributing to the pathophysiology. In this study, immune exhaustion gene expression was investigated in participants with ME/CFS or long COVID concurrently.

RNA was extracted from peripheral blood mononuclear cells isolated from participants with ME/CFS (n = 14), participants with long COVID (n = 15), and healthy controls (n = 18). Participants with ME/CFS were included according to Canadian Consensus Criteria. Participants with long COVID were eligible according to the case definition for “Post COVID-19 Condition” published by the World Health Organization. RNA was analyzed using the NanoString nCounter Immune Exhaustion gene expression panel.

Differential gene expression analysis in ME/CFS revealed downregulated IFN signaling and immunoglobulin genes, and this suggested a state of immune suppression. Pathway analysis implicated dysregulated macrophage activation, cytokine production, and immunodeficiency signaling.

Long COVID samples exhibited dysregulated expression of genes regarding antigen presentation, cytokine signaling, and immune activation. Differentially expressed genes were associated with antigen presentation, B cell development, macrophage activation, and cytokine signaling.

This investigation elucidates the intricate role of both adaptive and innate immune dysregulation underlying ME/CFS and long COVID, emphasizing the potential importance of immune exhaustion in disease progression.

Source: Natalie Eaton-Fitch, Penny Rudd, Teagan Er, Livia Hool, Lara Herrero, and Sonya Marshall-Gradisnik. Immune exhaustion in ME/CFS and long COVID. JCI Insight. 2024;9(20):e183810. https://doi.org/10.1172/jci.insight.183810. https://insight.jci.org/articles/view/183810 (Full text)

A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome

Abstract:

Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation.

In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts.

Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients.

This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.

Source: Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun. 2024 Oct 8:S0889-1591(24)00648-2. doi: 10.1016/j.bbi.2024.10.006. Epub ahead of print. PMID: 39389388. https://www.sciencedirect.com/science/article/abs/pii/S0889159124006482

Inspiratory muscle training improves autonomic function in myalgic encephalomyelitis/chronic fatigue syndrome and post-acute sequelae of SARS-CoV-2: a pilot study

Abstract:

Post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are debilitating post-viral conditions with many symptomatic overlaps, including exercise intolerance and autonomic dysfunction. Both conditions are growing in prevalence, and effective safe treatment strategies must be investigated. We hypothesized that inspiratory muscle training (IMT) could be used in PASC and mild to moderate ME/CFS to mitigate symptoms, improve exercise capacity, and improve autonomic function.

We recruited healthy controls (n=12; 10 women), people with PASC (n=9; 8 women), and people with mild to moderate ME/CFS (n=12; 10 women) to complete 8 weeks of IMT. This project was registered as a clinical trial (NCT05196529) with clinicaltrials.gov.

After completion of IMT, all groups experienced improvements in inspiratory muscle pressure (p<0.001), 6-minute walk distance (p=0.002), resting heart rate (p=0.037), heart rate variability (p<0.05), and symptoms related to sleep (p=0.009). In the ME/CFS group only, after completion of IMT, there were additional improvements with regard to vascular function (p=0.001), secretomotor function (p=0.023), the total weighted score (p=0.005) of the COMPASS 31 autonomic questionnaire, and symptoms related to pain (p=0.016).

We found that after 8 weeks of IMT, people with PASC and/or ME/CFS could see some overall improvements in their autonomic function and symptomology.

Source: Edgell H, Pereira TJ, Kerr K, Bray R, Tabassum F, Sergio L, Badhwar S. Inspiratory muscle training improves autonomic function in myalgic encephalomyelitis/chronic fatigue syndrome and post-acute sequelae of SARS-CoV-2: a pilot study. Respir Physiol Neurobiol. 2024 Oct 5:104360. doi: 10.1016/j.resp.2024.104360. Epub ahead of print. PMID: 39374820. https://www.sciencedirect.com/science/article/pii/S1569904824001538 (Full text)

Muscular metabolic plasticity in 3D in vitro models against systemic stress factors in ME/CFS and long COVID-19

Abstract:

Myalgic encephalomyelities/ chronic fatigue syndrome and long COVID-19 are clinically challenging, multi-symptomatic conditions with multiple overlapping symptoms. Unfortunately, contemporary research is directly being done on patients which risks exacerbating their symptoms. Using our 3-D in vitro skeletal muscle tissues we have mapped the progression of functional, physiological, and metabolic adaptations of the tissues in response to patient sera over time.

During short exposure we treated the tissues for 48 hours with patient sera. The contractile profiles of these tissues were severely compromised. Transcriptomic analyses of these short exposure samples showed an absence of significant differentially expressed genes between ME/CFS and LC-19. The analyses revealed an upregulation of glycolytic enzymes especially of PDK4, suggesting a switch away from Oxidative Phosphorylation as well as a decline in DRP1, involved in mitochondrial fission.

Subsequent structural analyses confirmed hypertrophy in myotubes and hyperfused mitochondrial networks. Mitochondrial oxygen consumption capacity, evaluated through the MitoStress test, was also elevated, as was the non-mitochondrial respiration confirming the shift to glycolysis.

Interestingly, at short exposures of 48 hours, the muscle tissues appeared to be adapting to the stress factors by upregulating glycolysis and increasing the muscular metabolic volume. Prolonging the exposure to 96 and 144 hours induced high fatiguability, and fragility in tissues. The mitochondria, at longer exposures, appeared to be fragmented and assumed a toroidal conformation indicating a change in mitochondrial membrane potential.

We hypothesize that the disease progresses through an intermediary stress-induced hypermetabolic state, ultimately leading to severe deterioration of muscle function. This is the first account of research that proposes acquired metabolic plasticity in 3D skeletal muscles exposed to ME/CFS and Long COVID-19 sera.

Source: S. Mughal, F. Andújar-Sánchez, M. Sabater-Arcis, J. Fernández-Costa, J. Ramón-Azcón. 571P Muscular metabolic plasticity in 3D in vitro models against systemic stress factors in ME/CFS and long COVID-19. Neuromuscular Disorders, Volume 43, Supplement 1, October 2024, 104441.162. https://www.sciencedirect.com/science/article/abs/pii/S0960896624003353

A pilot cross-sectional investigation of symptom clusters and associations with patient-reported outcomes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Post COVID-19 Condition

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is associated with long-term disability and poor quality of life (QoL). Cardinal ME/CFS symptoms (including post-exertional malaise, cognitive dysfunction and sleep disturbances) have been observed in Post COVID-19 Condition (PCC). To gain further insight into the potential role of ME/CFS as a post-COVID-19 sequela, this study investigates associations between symptoms and patient-reported outcomes, as well as symptom clusters.
Methods: Participants included Australian residents aged between 18 and 65 years formally diagnosed with ME/CFS fulfilling the Canadian or International Consensus Criteria or PCC meeting the World Health Organization case definition. Validated, self-administered questionnaires collected participants’ sociodemographic and illness characteristics, symptoms, QoL and functional capacity. Associations between symptoms and patient-reported outcomes were investigated with multivariate linear regression models. Hierarchical cluster analysis was performed to identify symptom clusters.
Results: Most people with ME/CFS (pwME/CFS) and people with PCC (pwPCC) were female (n = 48/60, 80.0% and n = 19/30, 63.3%, respectively; p = 0.12). PwME/CFS were significantly younger (x̄=41.75, s = 12.91 years) than pwPCC (x̄=48.13, s =10.05 years; p =0.017). Autonomic symptoms (notably dyspnoea) were associated with poorer scores in most patient-reported outcome domains for both cohorts. None of the four symptom clusters identified were unique to ME/CFS or PCC. Clusters were largely delineated by the presence of gastrointestinal and neurosensory symptoms, illness duration, ME/CFS criteria met and total symptoms.
Conclusions: Illness duration may explain differences in symptom burden between pwME/CFS and pwPCC. PCC diagnostic criteria must be refined to distinguish pwPCC at risk of long-term ME/CFS-like illness and subsequently deliver necessary care and support.
Source: Weigel B, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. A pilot cross-sectional investigation of symptom clusters and associations with patient-reported outcomes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Post COVID-19 Condition. Qual Life Res. 2024 Oct 3. doi: 10.1007/s11136-024-03794-x. Epub ahead of print. PMID: 39361124. https://link.springer.com/article/10.1007/s11136-024-03794-x (Full text)