Abstract:
Category: Methodology
Comparison of a 20 degree and 70 degree tilt test in adolescent myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients
Abstract:
Introduction: During a standard 70-degree head-up tilt test, 90% of adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) develop an abnormal reduction in cerebral blood flow (CBF). A 70-degree test might not be tolerated by young ME/CFS patients because of the high incidence of syncopal spells. This study examined whether a test at 20 degrees would be sufficient to provoke important reductions in CBF in young ME/CFS patients.
Methods: We analyzed 83 studies of adolescent ME/CFS patients. We assessed CBF using extracranial Doppler measurements of the internal carotid and vertebral arteries supine and during the tilt. We studied 42 adolescents during a 20 degree and 41 during a 70 degree test.
Results: At 20 degrees, no patients developed postural orthostatic tachycardia (POTS), compared to 32% at 70 degrees (p = 0.0002). The CBF reduction during the 20 degree tilt of -27(6)% was slightly less than during the reduction during a 70 degree test [-31(7)%; p = 0.003]. Seventeen adolescents had CBF measurements at both 20 and 70 degrees. The CBF reduction in these patients with both a 20 and 70 degrees test was significantly larger at 70 degrees than at 20 degrees (p < 0.0001).
Conclusions: A 20 degree tilt in young ME/CFS patients resulted in a CBF reduction comparable to that in adult patients during a 70 degree test. The lower tilt angle provoked less POTS, emphasizing the importance of using the 70 degree angle for that diagnosis. Further study is needed to explore whether CBF measurements during tilt provide an improved standard for classifying orthostatic intolerance.
Source: van Campen CLMC, Rowe PC, Visser FC. Comparison of a 20 degree and 70 degree tilt test in adolescent myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. Front Pediatr. 2023 May 12;11:1169447. doi: 10.3389/fped.2023.1169447. PMID: 37252045; PMCID: PMC10213432. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213432/ (Full text)
Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome
Abstract:
Background and purpose: Free-water-corrected diffusion tensor imaging (FW-DTI), a new analysis method for diffusion MRI, can indicate neuroinflammation and degeneration. There is increasing evidence of autoimmune etiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We used FW-DTI and conventional DTI to investigate microstructural brain changes related to autoantibody titers in patients with ME/CFS.
Methods: We prospectively examined 58 consecutive right-handed ME/CFS patients who underwent both brain MRI including FW-DTI and a blood analysis of autoantibody titers against β1 adrenergic receptor (β1 AdR-Ab), β2 AdR-Ab, M3 acetylcholine receptor (M3 AchR-Ab), and M4 AchR-Ab. We investigated the correlations between these four autoantibody titers and three FW-DTI indices-free water (FW), FW-corrected fractional anisotropy (FAt), and FW-corrected mean diffusivity-as well as two conventional DTI indices-fractional anisotropy (FA) and mean diffusivity. The patients’ age and gender were considered as nuisance covariates. We also evaluated the correlations between the FW-DTI indices and the performance status and disease duration.
Results: Significant negative correlations between the serum levels of several autoantibody titers and DTI indices were identified, mainly in the right frontal operculum. The disease duration showed significant negative correlations with both FAt and FA in the right frontal operculum. The changes in the FW-corrected DTI indices were observed over a wider extent compared to the conventional DTI indices.
Conclusions: These results demonstrate the value of using DTI to assess the microstructure of ME/CFS. The abnormalities of right frontal operculum may be a diagnostic marker for ME/CFS.
Source: Kimura Y, Sato W, Maikusa N, Ota M, Shigemoto Y, Chiba E, Arizono E, Maki H, Shin I, Amano K, Matsuda H, Yamamura T, Sato N. Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome. J Neuroimaging. 2023 May 27. doi: 10.1111/jon.13128. Epub ahead of print. PMID: 37243973. https://pubmed.ncbi.nlm.nih.gov/37243973/
Natural killer cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a multi-site clinical assessment of ME/CFS (MCAM) sub-study
Abstract:
Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by substantial reduction in function accompanied by profound unexplained fatigue not significantly relieved by rest, post-exertional malaise, and other symptoms. Reduced natural killer (NK) cell count and cytotoxicity has been investigated as a biomarker for ME/CFS, but few clinical laboratories offer the test and multi-site verification studies have not been conducted.
Methods: We determined NK cell counts and cytotoxicity in 174 (65%) ME/CFS, 86 (32%) healthy control (HC) and 10 (3.7%) participants with other fatigue associated conditions (ill control [IC]) from the Multi-Site Clinical Assessment of ME/CFS (MCAM) study using an assay validated for samples shipped overnight instead of testing on day of venipuncture.
Results: We found a large variation in percent cytotoxicity [mean and (IQR) for ME/CFS and HC respectively, 34.1% (IQR 22.4-44.3%) and 33.6% (IQR 22.9-43.7%)] and no statistically significant differences between patients with ME/CFS and HC (p-value = 0.79). Analysis stratified on illness domain measured with standardized questionnaires did not identify an association of NK cytotoxicity with domain scores. Among all participants, NK cytotoxicity was not associated with survey results of physical and mental well-being, or health factors such as history of infection, obesity, smoking, and co-morbid conditions.
Conclusion: These results indicate this assay is not ready for clinical implementation and studies are needed to further explore immune parameters that may be involved in the pathophysiology of ME/CFS.
Source: Querec TD, Lin JS, Chen Y, Helton B, Kogelnik AM, Klimas NG, Peterson DL, Bateman L, Lapp C, Podell RN, Natelson BH, Unger ER; MCAM Study Group. Natural killer cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a multi-site clinical assessment of ME/CFS (MCAM) sub-study. J Transl Med. 2023 Apr 3;21(1):242. doi: 10.1186/s12967-023-03958-2. PMID: 37013608. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-03958-2 (Full text)
Development and measurement properties of the PEM/PESE activity questionnaire (PAQ)
Abstract:
Background: Existing instruments often are inappropriate to measure the effects of post-exertional malaise (PEM) and post-exertional symptom exacerbation (PESE) on activities of daily living (ADLs). A validated questionnaire to measure self-reported ability with ADLs would advance research and clinical practice in conditions like myalgic encephalomyelitis and Long Covid.
Objective: Determine the measurement properties of the PEM/PESE Activity Questionnaire (PAQ).
Methods: The PAQ is adapted from the Patient Specific Functional Scale. Respondents rated three self-selected ADLs on two 0-100 scales, including current performance compared to (1) a ‘good day’ and (2) before illness. Respondents provided a Burden of Functioning rating on a 0-100 scale, anchored at 0 being the activity took “No time, effort, and resources at all” and 10 being “All of my time, effort, and resources.” Respondents took the PAQ twice, completing a demographic questionnaire after the first PAQ and before the second PAQ. Descriptive statistics and intraclass correlation coefficients were calculated for each scale to assess test-retest reliability. Minimum detectable change outside the 95% confidence interval (MDC95) was calculated. Ceiling and floor effects were determined when the MDC95 for average and function scores crossed 0 and 100, respectively.
Results: n = 981 responses were recorded, including n = 675 complete surveys. Test-retest reliability was generally fair to excellent, depending on function and scale. MDC95 values generally indicated scale responsiveness. Ceiling and floor effects were noted infrequently for specific functions.
Conclusion: The PAQ is valid, reliable, and sensitive. Additional research may explore measurement properties involving functions that were infrequently selected in this sample.
Source: Davenport TE, Stevens SR, Stevens J, Snell CR, Van Ness JM. Development and measurement properties of the PEM/PESE activity questionnaire (PAQ). Work. 2023 Mar 13. doi: 10.3233/WOR-220553. Epub ahead of print. PMID: 36938768. https://content.iospress.com/articles/work/wor220553 (Full text)
Developing a blood cell-based diagnostic test for myalgic encephalomyelitis/chronic fatigue syndrome using peripheral blood mononuclear cells
Abstract:
A blood-based diagnostic test for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and multiple sclerosis (MS) would be of great value in both conditions, facilitating more accurate and earlier diagnosis, helping with current treatment delivery, and supporting the development of new therapeutics.
Here we use Raman micro-spectroscopy to examine differences between the spectral profiles of blood cells of ME/CFS, MS and healthy controls.
We were able to discriminate the three groups using ensemble classification models with high levels of accuracy (91%) with the additional ability to distinguish mild, moderate, and severe ME/CFS patients from each other (84%).
To our knowledge, this is the first research using Raman micro-spectroscopy to discriminate specific subgroups of ME/CFS patients on the basis of their symptom severity. Specific Raman peaks linked with the different disease types with the potential in further investigations to provide insights into biological changes associated with the different conditions.
Source: Jiabao Xu, Tiffany Lodge, Caroline Claire Kingdon, James W L Strong, John Maclennan, Eliana Lacerda, Slawomir Kujawski, Pawel Zalewski, Wei Huang, Karl J. Morten. Developing a blood cell-based diagnostic test for myalgic encephalomyelitis/chronic fatigue syndrome using peripheral blood mononuclear cells. medRxiv [Preprint] medRxiv 2023.03.18.23286575; doi: https://doi.org/10.1101/2023.03.18.23286575 https://www.medrxiv.org/content/10.1101/2023.03.18.23286575v1.full-text (Full text)
The Conners Continuous Performance Test CPT3™: Is it a reliable marker to predict neurocognitive dysfunction in Myalgic encephalomyelitis/chronic fatigue syndrome?
Introduction: The main objective is to delimit the cognitive dysfunction associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) in adult patients by applying the Continuous Performance Test (CPT3™). Additionally, provide empirical evidence on the usefulness of this computerized neuropsychological test to assess ME/CFS.
Method: The final sample (n = 225; 158 Patients/67 Healthy controls) were recruited in a Central Sensitization Syndromes (CSS) specialized unit in a tertiary hospital. All participants were administered this neuropsychological test.
Results: There were significant differences between ME/CFS and healthy controls in all the main measures of CPT3™. Mainly, patients had a worse indicator of inattentiveness, sustained attention, vigilance, impulsivity, slow reaction time, and more atypical T-scores, which is associated with a likelihood of having a disorder characterized by attention deficits, such as Attention Deficit Hyperactivity Disorder (ADHD). In addition, relevant correlations were obtained between the CPT3™ variables in the patient’s group. The most discriminative indicators of ME/CFS patients were Variability and Hit Reaction Time, both measures of response speed.
Conclusion: The CPT3™ is a helpful tool to discriminate neurocognitive impairments from attention and response speed in ME/CFS patients, and it could be used as a marker of ME/CFS severity for diagnosing or monitoring this disease.
Source: Fernández-Quirós J, Lacasa-Cazcarra M, Alegre-Martín J, Sanmartín-Sentañes R, Almirall M, Launois-Obregón P, Castro-Marrero J, Rodríguez-Urrutia A, Navarro-Sanchis JA and Ramos-Quiroga JA (2023) The Conners Continuous Performance Test CPT3™: Is it a reliable marker to predict neurocognitive dysfunction in Myalgic encephalomyelitis/chronic fatigue syndrome? Front. Psychol. 14:1127193. doi: 10.3389/fpsyg.2023.1127193 https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1127193/full (Full text)
Using Data Mining and Time Series to Investigate ME and CFS Naming Preferences
Abstract:
Evaluating the ability of patient reported outcome measures to represent the functional limitation of people living with myalgic encephalomyelitis/chronic fatigue syndrome
Abstract:
Aim: To identify activities which people with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) report are impacted by their condition, and evaluate the ability of measures of function used by National Health Service (NHS) ME/CFS Services to represent these experiences.
Method: 122 participants completed ME/CFS Service questionnaires reporting activities that they had reduced or stopped doing, as well as Patient Reported Outcome Measures (PROMs). These data were coded using the International Classification of Functioning, Disability and Health (ICF) using established linking rules. Matrices identified the agreement rate between the outcome measures and the participant-generated list. Activities which could not be coded against the ICF were grouped using content analysis.
Results: Responses from participants related to codes from nine subsections of the ICF. The PROMs used by the ME/CFS service had agreement rates between 58% and 62.5% with the participant-generated list. The content analysis identified a range of activities that were meaningful to participants that they could no longer do. These included holidays and day trips, accessing the community independently, and sustaining activity into the evening. These were not captured in either the ICF or the service’s outcome measures.
Conclusion: The list generated by participants referred to a wide range of activities, including some not captured by the ICF. Comparison against the outcome measures suggests that the measures used in many NHS ME/CFS services nationally capture patients’ experiences moderately well. However, there are activities that patients value that are not captured by these measures.
Source: Bethan Jones, Corin Bourne & Peter Gladwell. Evaluating the ability of patient reported outcome measures to represent the functional limitation of people living with myalgic encephalomyelitis/chronic fatigue syndrome. Fatigue: Biomedicine, Health & Behavior, DOI: 10.1080/21641846.2023.2175579 (Full text)
Multimodal MRI of myalgic encephalomyelitis/chronic fatigue syndrome: A cross-sectional neuroimaging study toward its neuropathophysiology and diagnosis
Abstract:
Introduction: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), is a debilitating illness affecting up to 24 million people worldwide but concerningly there is no known mechanism for ME/CFS and no objective test for diagnosis. A series of our neuroimaging findings in ME/CFS, including functional MRI (fMRI) signal characteristics and structural changes in brain regions particularly sensitive to hypoxia, has informed the hypothesis that abnormal neurovascular coupling (NVC) may be the neurobiological origin of ME/CFS. NVC is a critical process for normal brain function, in which glutamate from an active neuron stimulates Ca2+ influx in adjacent neurons and astrocytes. In turn, increased Ca2+ concentrations in both astrocytes and neurons trigger the synthesis of vascular dilator factors to increase local blood flow assuring activated neurons are supplied with their energy needs.
This study investigates NVC using multimodal MRIs: (1) hemodynamic response function (HRF) that represents regional brain blood flow changes in response to neural activities and will be modeled from a cognitive task fMRI; (2) respiration response function (RRF) represents autoregulation of regional blood flow due to carbon dioxide and will be modeled from breath-holding fMRI; (3) neural activity associated glutamate changes will be modeled from a cognitive task functional magnetic resonance spectroscopy. We also aim to develop a neuromarker for ME/CFS diagnosis by integrating the multimodal MRIs with a deep machine learning framework.
Methods and analysis: This cross-sectional study will recruit 288 participants (91 ME/CFS, 61 individuals with chronic fatigue, 91 healthy controls with sedentary lifestyles, 45 fibromyalgia). The ME/CFS will be diagnosed by consensus diagnosis made by two clinicians using the Canadian Consensus Criteria 2003. Symptoms, vital signs, and activity measures will be collected alongside multimodal MRI.
The HRF, RRF, and glutamate changes will be compared among four groups using one-way analysis of covariance (ANCOVA). Equivalent non-parametric methods will be used for measures that do not exhibit a normal distribution. The activity measure, body mass index, sex, age, depression, and anxiety will be included as covariates for all statistical analyses with the false discovery rate used to correct for multiple comparisons.
The data will be randomly divided into a training (N = 188) and a validation (N = 100) group. Each MRI measure will be entered as input for a least absolute shrinkage and selection operator—regularized principal components regression to generate a brain pattern of distributed clusters that predict disease severity. The identified brain pattern will be integrated using multimodal deep Boltzmann machines as a neuromarker for predicting ME/CFS fatigue conditions. The receiver operating characteristic curve of the identified neuromarker will be determined using data from the validation group.
Ethics and study registry: This study was reviewed and approved by University of the Sunshine Coast University Ethics committee (A191288) and has been registered with The Australian New Zealand Clinical Trials Registry (ACTRN12622001095752).
Dissemination of results: The results will be disseminated through peer reviewed scientific manuscripts and conferences and to patients through social media and active engagement with ME/CFS associations.
Source: Shan ZY, Mohamed AZ, Andersen T, Rendall S, Kwiatek RA, Fante PD, Calhoun VD, Bhuta S, Lagopoulos J. Multimodal MRI of myalgic encephalomyelitis/chronic fatigue syndrome: A cross-sectional neuroimaging study toward its neuropathophysiology and diagnosis. Front Neurol. 2022 Sep 16;13:954142. doi: 10.3389/fneur.2022.954142. PMID: 36188362; PMCID: PMC9523103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523103/ (Full text)