Perturbation of effector and regulatory T cell subsets in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder of unknown etiology, and diagnosis of the disease is largely based on clinical symptoms. We hypothesized that immunological disruption is the major driver of this disease and analyzed a large cohort of ME/CFS patient or control blood samples for differences in T cell subset frequencies and functions.

We found that the ratio of CD4+ to CD8+ T cells and the proportion of CD8+ effector memory T cells were increased, whereas NK cells were reduced in ME/CFS patients younger than 50 years old compared to a healthy control group. Remarkably, major differences were observed in Th1, Th2, Th17 and mucosal-associated invariant T (MAIT) T cell subset functions across all ages of patients compared to healthy subjects. While CCR6+ Th17 cells in ME/CFS secreted less IL-17 compared to controls, their overall frequency was higher. Similarly, MAIT cells from patients secreted lower IFNγ, GranzymeA and IL-17 upon activation.

Together, these findings suggest chronic stimulation of these T cell populations in ME/CFS patients. In contrast, the frequency of regulatory T cells (Tregs), which control excessive immune activation, was higher in ME/CFS patients. Finally, using a machine learning algorithm called random forest, we determined that the set of T cell parameters analyzed could identify more than 90% of the subjects in the ME/CFS cohort as patients (93% true positive rate or sensitivity).

In conclusion, these multiple and major perturbations or dysfunctions in T cell subsets in ME/CFS patients suggest potential chronic infections or microbiome dysbiosis. These findings also have implications for development of ME/CFS specific immune biomarkers and reveal potential targets for novel therapeutic interventions.

Source: Ece Karhan, Courtney L Gunter, Vida Ravanmehr, Meghan Horne, Lina Kozhaya, Stephanie Renzullo, Lindsey Placek, Joshy George, Peter N Robinson, Suzanne D Vernon, Lucinda Bateman, Derya Unutmaz. Perturbation of effector and regulatory T cell subsets in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
bioRxiv 2019.12.23.887505; doi: https://doi.org/10.1101/2019.12.23.887505 https://www.biorxiv.org/content/10.1101/2019.12.23.887505v1 (Full text available as PDF file)

Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and post-exertional malaise. There is little known about the metabolism of specific immune cells in ME/CFS patients. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 ME/CFS patients and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism, and plasma cytokines.

We found that ME/CFS CD8+ T cells have reduced mitochondrial membrane potential compared to healthy controls. Both CD4+ and CD8+ T cells from ME/CFS patients had reduced glycolysis at rest, while CD8+ T cells also had reduced glycolysis following activation. ME/CFS patients had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from healthy control subjects.

Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.

Source: Mandarano AH, Maya J, Giloteaux L, Peterson DL, Maynard M, Gottschalk CG, Hanson MR. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. J Clin Invest. 2019 Dec 12. pii: 132185. doi: 10.1172/JCI132185. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31830003

Study finds differences in energy use by immune cells in ME/CFS

Press Release: New findings published in the Journal of Clinical Investigation suggest that specific immune T cells from people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) show disruptions in the way they produce energy. The research was supported by the National Institutes of Health.

“This research gives us additional evidence for the role of the immune system in ME/CFS and may provide important clues to help us understand the mechanisms underlying this devastating disease,” said Vicky Whittemore, Ph.D., program director at NIH’s National Institute of Neurological Disorders and Stroke (NINDS), which partially funded the study.

ME/CFS is a severe, chronic, and debilitating disease that can cause a range of symptoms including pain, severe exhaustion, cognitive impairment, and post-exertional malaise, the worsening of symptoms after physical or mental activity. Estimates suggest that between 836,000 and 2.5 million people in the United States may be affected by ME/CFS. It is unknown what causes the disease and there are no treatments.

Research by Alexandra Mandarano and collaborators in the laboratory of Maureen Hanson, Ph.D., professor of molecular biology and genetics at Cornell University in Ithaca, New York, examined biochemical reactions involved in energy production, or metabolism, in two specific types of immune cells obtained from 45 healthy controls and 53 people with ME/CFS. Investigators focused on CD4 T cells, which alert other immune cells about invading pathogens, and CD8 T cells, which attack infected cells. Dr. Hanson’s team used state-of-the-art methods to look at energy production by the mitochondria within T cells, when the cells were in a resting state and after they had been activated. Mitochondria are biological powerhouses and create most of the energy that drives cells.

Dr. Hanson and her colleagues did not see significant differences in mitochondrial respiration, the cell’s primary energy-producing method, between healthy and ME/CFS cells at rest or after activation. However, results suggest that glycolysis, a less efficient method of energy production, may be disrupted in ME/CFS. Compared to healthy cells, CD4 and CD8 cells from people with ME/CFS had decreased levels of glycolysis at rest. In addition, ME/CFS CD8 cells had lower levels of glycolysis after activation.

“Our work demonstrates the importance of looking at particular types of immune cells that have different jobs to do, rather than looking at them all mixed together, which can hide problems specific to particular cells,” said Dr. Hanson. “Additional studies focusing on specific cell types will be important to unravel what’s gone wrong with immune defenses in ME/CFS.”

Dr. Hanson’s group also looked at mitochondrial size and membrane potential, which can indicate the health of T cell mitochondria. CD4 cells from healthy controls and people with ME/CFS showed no significant differences in mitochondrial size nor function. CD8 cells from people with ME/CFS showed decreased membrane potential compared to healthy cells during both resting and activated states.

Dr. Hanson’s team examined associations between cytokines, chemical messengers that send instructions from one cell to another, and T cell metabolism. The findings revealed different, and often opposite, patterns between healthy and ME/CFS cells, suggesting changes in the immune system. In addition, the presence of cytokines that cause inflammation unexpectedly correlated with decreased metabolism in T cells.

This study was supported in part by the NIH’s ME/CFS Collaborative Research Network, a consortium supported by multiple institutes and centers at NIH, consisting of three collaborative research centers and a data management coordinating center. The research network was established in 2017 to help advance research on ME/CFS.

“In addition to providing valuable insights into the immunology of ME/CFS, we hope that the results coming out of the collaborative research network will inspire more researchers, particularly those in the early stages of their careers, to work on this disease,” said Joseph Breen, Ph.D., section chief, Immunoregulation Section, Basic Immunology Branch, National Institute of Allergy and Infectious Diseases (NIAID), which partially funded the study.

Future research studies will examine metabolism in other subsets of immune cells. In addition, researchers will investigate ways in which changes in metabolism affect the activity of T cells.

This study was supported by NINDS grant U54NS105541, NIAID grant R21AI117595, Simmaron Research, and an anonymous private donor.

NINDS (https://www.ninds.nih.gov/) is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

Reference: Mandarano et al. “Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations,” Journal of Clinical Investigation. December 12, 2019

Transient receptor potential melastatin 2 channels are overexpressed in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is hallmarked by a significant reduction in natural killer (NK) cell cytotoxicity, a mechanism tightly regulated by calcium (Ca2+). Interestingly, interleukin-2 (IL-2) increases NK cell cytotoxicity. Transient receptor potential melastatin 2 (TRPM2) ion channels are fundamental for Ca2+ signalling in NK cells. This pilot investigation aimed to characterise TRPM2 and CD38 surface expression in vitro on NK cells in ME/CFS patients. This investigation furthermore examined the pharmaceutical effect of 8-bromoadenosine phosphoribose (8-Br-ADPR) and N6-Benzoyladenosine-3′,5′-cyclic monophosphate (N6-Bnz-cAMP) on TRPM2 and CD38 surface expression and NK cell cytotoxicity between ME/CFS and healthy control (HC) participants.

METHODS: Ten ME/CFS patients (43.45 ± 12.36) and 10 HCs (43 ± 12.27) were age and sex-matched. Isolated NK cells were labelled with fluorescent antibodies to determine baseline and drug-treated TRPM2 and CD38 surface expression on NK cell subsets. Following IL-2 stimulation, NK cell cytotoxicity was measured following 8-Br-ADPR and N6-Bnz-cAMP drug treatments by flow cytometry.

RESULTS: Baseline TRPM2 and CD38 surface expression was significantly higher on NK cell subsets in ME/CFS patients compared with HCs. Post IL-2 stimulation, TRPM2 and CD38 surface expression solely decreased on the CD56DimCD16+ subset. 8-Br-ADPR treatment significantly reduced TRPM2 surface expression on the CD56BrightCD16Dim/- subset within the ME/CFS group. Baseline cell cytotoxicity was significantly reduced in ME/CFS patients, however no changes were observed post drug treatment in either group.

CONCLUSION: Overexpression of TRPM2 on NK cells may function as a compensatory mechanism to alert a dysregulation in Ca2+ homeostasis to enhance NK cell function in ME/CFS, such as NK cell cytotoxicity. As no improvement in NK cell cytotoxicity was observed within the ME/CFS group, an impairment in the TRPM2 ion channel may be present in ME/CFS patients, resulting in alterations in [Ca2+]i mobilisation and influx, which is fundamental in driving NK cell cytotoxicity. Differential expression of TRPM2 between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in ME/CFS.

Source: Balinas C, Cabanas H, Staines D, Marshall-Gradisnik S. Transient receptor potential melastatin 2 channels are overexpressed in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med. 2019 Dec 3;17(1):401. doi: 10.1186/s12967-019-02155-4. https://www.ncbi.nlm.nih.gov/pubmed/31796045

A systematic review of natural killer cells profile and cytotoxic function in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Compromised natural killer (NK) cell cytotoxic function is a well-documented and consistent feature of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Other outcomes evaluated in NK cells of ME/CFS patients, however, remain equivocal. The aim of this study was to conduct a systematic review of the literature regarding NK cell phenotype, receptor expression, cytokine production and cytotoxicity in ME/CFS patients and determine the appropriateness as a model for ME/CFS.

METHODS: Medline (EBSCOHost), Scopus, EMBASE and PubMed databases were systematically searched to source relevant papers published between 1994 and March 2018. This review included studies examining NK cells’ features in ME/CFS patients compared with HC following administration of specific inclusion and exclusion criteria. Secondary outcomes included genetic analysis in isolated NK cells or quality of life assessment. Quality assessment was completed using the Downs and Black checklist in addition to The Joanna Briggs Institute checklist.

RESULTS: Seventeen eligible publications were included in this review. All studies were observational case control studies. Of these, 11 investigated NK cell cytotoxicity, 14 investigated NK cell phenotype and receptor profiles, three examined NK cell cytokine production, six investigated NK cell lytic protein levels and four investigated NK cell degranulation. Impaired NK cell cytotoxicity remained the most consistent immunological report across all publications. Other outcomes investigated differed between studies.

CONCLUSION: A consistent finding among all papers included in this review was impaired NK cell cytotoxicity, suggesting that it is a reliable and appropriate cellular model for continued research in ME/CFS patients. Aberrations in NK cell lytic protein levels were also reported. Although additional research is recommended, current research provides a foundation for subsequent investigations. It is possible that NK cell abnormalities can be used to characterise a subset of ME/CFS due to the heterogeneity of both the illness itself and findings between studies investigating specific features of NK function.

Source: Eaton-Fitch N, du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. A systematic review of natural killer cells profile and cytotoxic function in myalgic encephalomyelitis/chronic fatigue syndrome. Syst Rev. 2019 Nov 14;8(1):279. doi: 10.1186/s13643-019-1202-6. https://www.ncbi.nlm.nih.gov/pubmed/31727160

Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a seriously long-term and debilitating illness of unknown cause hallmarked by chronic pain and fatigue, memory and concentration impairment, and inflammation. ME/CFS hypothesis involves impaired Transient receptor potential melastatin 3 (TRPM3) ion channel function, affecting calcium signaling and Natural killer (NK) cell functions.

Currently, substances called opioids, agonists of mu (μ)-opioid receptors (μOR), are the strongest painkillers clinically available for people suffering from strong or long-lasting pain characteristic of ME/CFS. μOR have been reported to specifically inhibit TRPM3 and to be expressed in immune cells where they play an immunomodulatory and immunosuppressive role. Naltrexone hydrochloride (NTX) acts as an antagonist to the μOR thus negating the inhibitory function of this opioid receptor on TRPM3.

Therefore, understanding the mechanism of action for NTX in regulating and modulating TRPM3 channel function in NK cells will provide important information for the development of effective therapeutic interventions for ME/CFS. Whole-cell patch-clamp technique was used to measure TRPM3 activity in Interleukin-2 (IL-2) stimulated and NTX-treated NK cells for 24 h on eight ME/CFS patients and 8 age- and sex-matched healthy controls, after modulation with a TRPM3-agonist, pregnenolone sulfate (PregS), NTX and a TRPM3-antagonist, ononetin. We confirmed impaired TRPM3 function in ME/CFS patients through electrophysiological investigations in IL-2 stimulated NK cells after modulation with PregS and ononetin.

Importantly, TRPM3 channel activity was restored in IL-2 stimulated NK cells isolated from ME/CFS patients after incubation for 24 h with NTX. Moreover, we demonstrated that NTX does not act as an agonist by directly coupling on the TRPM3 ion channel gating. The opioid antagonist NTX has the potential to negate the inhibitory function of opioid receptors on TRPM3 in NK cells from ME/CFS patients, resulting in calcium signals remodeling, which will in turn affect cell functions, supporting the hypothesis that NTX may have potential for use as a treatment for ME/CFS. Our results demonstrate, for the first time, and based on novel patch clamp electrophysiology, potential pharmaco-therapeutic interventions in ME/CFS.

Source: Cabanas H, Muraki K, Staines D and Marshall-Gradisnik S (2019) Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Front. Immunol. 10:2545. doi: 10.3389/fimmu.2019.02545 https://www.frontiersin.org/articles/10.3389/fimmu.2019.02545/full (Full article)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome as a hyper-regulated immune system driven by an interplay between regulatory T cells and chronic human herpesvirus infections

Abstract:

Autoimmunity and chronic viral infections are recurrent clinical observations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a complex disease with an unknown cause. Given these observations, the regulatory CD4+ T cells (Tregs) show promise to be good candidates for the underlying pathology due to their known capacity to suppress the immune responses not only to body components but also against infections. Here we discussed the overlooked role of these cells in the chronicity of Human Herpes Virus 6 (HHV6), Herpes Simplex 1 (HSV1) and Epstein-Barr virus (EBV), as often reported as triggers of ME/CFS.

Using simulations of the Cross-regulation model for the dynamics of Tregs, we illustrated that mild infections might lead to a chronically activated immune responses under control of Tregs if the responding clone has a high autoimmune potential. Such infections promote persistent inflammation and possibly fatigue. We then hypothesized that ME/CFS is a condition characterized by a predominance of this type of infections under control of Tregs. In contrast, healthy individuals are hypothesized to trigger immune responses of a virus-specific clone with a low autoimmune potential.

According to this hypothesis, simple model simulations of the CD4+ T-cell repertoire could reproduce the increased density and percentages of Tregs observed in patients suffering from the disease when compared to healthy controls. A deeper analysis of Tregs in the pathogenesis of ME/CFS will help to assess the validity of this hypothesis.

Source: Nuno Sepúlveda, Jorge Carneiro, Eliana M. Lacerda and Luis C. Nacul. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome as a hyper-regulated immune system driven by an interplay between regulatory T cells and chronic human herpesvirus infections. Front. Immunol. | doi: 10.3389/fimmu.2019.02684. https://www.frontiersin.org/articles/10.3389/fimmu.2019.02684/abstract

Inflammatory proteins are altered in chronic fatigue syndrome-A systematic review and meta-analysis

Abstract:

Immune dysfunction has been posited as a key element in the aetiology of chronic fatigue syndrome (CFS) since the illness was first conceived. However, systematic reviews have yet to quantitatively synthesise inflammatory biomarkers across the literature. We undertook a systematic review and meta-analysis to quantify available data on circulating inflammatory proteins, examining studies recruiting patients with a CFS diagnosis and a non-affected control group. Results were meta-analysed from 42 studies.

Patients with CFS had significantly elevated tumour necrosis factor (ES = 0.274, p < 0.001), interleukin-2 (ES = 0.203, p = 0.006), interleukin-4 (ES = 0.373, p = 0.004), transforming growth factor-β (ES = 0.967, p < 0.001) and c-reactive protein (ES = 0.622, p = 0.019). 12 proteins did not differ between groups.

These data provide some support for an inflammatory component in CFS, although inconsistency of results indicates that inflammation is unlikely to be a primary feature in all those suffering from this disorder. It is hoped that further work will elucidate whether there are subgroups of patients with clinically-relevant inflammatory dysfunction, and whether inflammatory cytokines may provide a prognostic biomarker or moderate treatment effects.

Copyright © 2019. Published by Elsevier Ltd.

Source: Strawbridge R, Sartor ML, Scott F, Cleare AJ. Inflammatory proteins are altered in chronic fatigue syndrome-A systematic review and meta-analysis. Neurosci Biobehav Rev. 2019 Aug 26;107:69-83. doi: 10.1016/j.neubiorev.2019.08.011. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31465778

A systematic review of cytokines in chronic fatigue syndrome/myalgic encephalomyelitis/systemic exertion intolerance disease (CFS/ME/SEID)

Abstract:

BACKGROUND: Cytokines in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID) patients compared with healthy controls have been extensively studied. However, the evidence regarding whether a baseline difference between CFS/ME/SEID patients and the normal population remains unclear. The aim of this study was to conduct a systematic review of the literature regarding cytokines in CFS/ME/SEID and whether there is a significant difference in cytokine levels between this patient group and the normal population.

METHODS: Pubmed, Scopus, Medline (EBSCOHost), and EMBASE databases were searched to source relevant studies for CFS/ME/SEID. The review included any studies examining cytokines in CFS/ME/SEID patients compared with healthy controls. Results of the literature search were summarised according to aspects of their study design and outcome measures, namely, cytokines. Quality assessment was also completed to summarise the level of evidence available.

RESULTS: A total of 16,702 publications were returned using our search terms. After screening of papers according to our inclusion and exclusion criteria, 15 studies were included in the review. All the included studies were observational case control studies. Ten of the studies identified measured serum cytokines in CFS/ME/SEID patients, and four measured cytokines in other physiological fluids of CFS/ME/SEID patients. The overall quality assessment revealed most papers included in this systematic review to be consistent.

CONCLUSIONS: Despite the availability of moderate quality studies, the findings of this review are inconclusive as to whether cytokines play any definitive role in CFS/ME/SEID, and consequently, they would not serve as reliable biomarkers. Therefore, in light of these results, it is recommended that further efforts toward a diagnostic test and treatment for CFS/ME/SEID continue to be developed in a range of research fields.

Source: Corbitt M, Eaton-Fitch N, Staines D, Cabanas H, Marshall-Gradisnik S. A systematic review of cytokines in chronic fatigue syndrome/myalgic encephalomyelitis/systemic exertion intolerance disease (CFS/ME/SEID). BMC Neurol. 2019 Aug 24;19(1):207. doi: 10.1186/s12883-019-1433-0. https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-019-1433-0 (Full article)

Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe fatigue illness that occurs most commonly following a viral infection, but other physiological triggers are also implicated. It has a profound long-term impact on the life of the affected person. ME/CFS is diagnosed primarily by the exclusion of other fatigue illnesses, but the availability of multiple case definitions for ME/CFS has complicated diagnosis for clinicians.

There has been ongoing controversy over the nature of ME/CFS, but a recent detailed report from the Institute of Medicine (Academy of Sciences, USA) concluded that ME/CFS is a medical, not psychiatric illness. Importantly, aspects of the biological basis of the ongoing disease have been revealed over the last 2-3 years that promise new leads towards an effective clinical diagnostic test that may have a general application.

Our detailed molecular studies with a preclinical study of ME/CFS patients, along with the complementary research of others, have reported an elevation of inflammatory and immune processes, ongoing neuro-inflammation, and decreases in general metabolism and mitochondrial function for energy production in ME/CFS, which contribute to the ongoing remitting/relapsing etiology of the illness. These biological changes have generated potential molecular biomarkers for use in diagnostic ME/CFS testing.

Source: Sweetman E, Noble A, Edgar C, Mackay A, Helliwell A, Vallings R, Ryan M, Tate W. Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Diagnostics (Basel). 2019 Jul 10;9(3). pii: E73. doi: 10.3390/diagnostics9030073. https://www.mdpi.com/2075-4418/9/3/73 (Full article)