Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination

Abstract:

Long-term health problems such as fatigue, palpitations, syncope, and dizziness are well-known in patients after COVID-19 (post-acute sequelae of coronavirus (PASC)). More recently, comparable problems have been noticed after the SARS-CoV-2 vaccination (post-VAC). The pathophysiology of these problems is not well-understood.

Methods: In 38 children and young adults, we tested if these health problems were related to dysautonomia in an active standing test (Group 1: 19 patients after COVID-19; Group 2: 12 patients with a breakthrough infection despite a vaccination; and Group 3: 7 patients after a vaccination without COVID-19). The data were compared with a control group of 47 healthy age-matched patients, as recently published.

Results: All patients had a normal left ventricular function as measured by echocardiography. Significantly elevated diastolic blood pressure in all patient groups indicated a regulatory cardiovascular problem. Compared with the healthy control group, the patient groups showed significantly elevated heart rates whilst lying and standing, with significantly higher heart rate increases. The stress index was significantly enhanced in all patient groups whilst lying and standing. Significantly decreased pNN20 values, mostly whilst standing, indicated a lower vagus activity in all patient groups. The respiratory rates were significantly elevated in Groups 1 and 2.

Conclusion: The uniform increase in the heart rates and stress indices, together with low pNN20 values, indicated dysautonomia in children with health problems after COVID-19 disease and/or vaccination. A total of 8 patients fulfilled the criteria of postural orthostatic tachycardia syndrome and 9 patients of an inappropriate sinus tachycardia, who were successfully treated with omega-3 fatty acid supplementation and pharmacotherapy.

Source: Buchhorn R. Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination. Vaccines (Basel). 2022 Oct 9;10(10):1686. doi: 10.3390/vaccines10101686. PMID: 36298551; PMCID: PMC9607162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607162/ (Full text)

Chronic fatigue syndrome: System under stress

Australian researchers have discovered for the first time that reduced heart rate variability — or changes in heart beat timing — best predicts cognitive disturbances, such as concentration difficulties commonly reported by people with chronic fatigue syndrome (CFS). This adds to the growing body of evidence linking autonomic nervous system imbalance to symptoms of this poorly understood disorder.

The findings are reported in the journal PLOS ONE.

Chronic fatigue syndrome is characterised by medically unexplained, disabling fatigue and neuropsychiatric symptoms of at least six months’ duration. The disturbance underlying the symptoms in CFS is still poorly understood.

“We have studied autonomic function in CFS for some time and our findings clearly indicate a loss of integrity in stress-responsive neural and physiological systems in CFS. Patients with this condition are hyper-responsive to challenges arising both from within the body and from the environment,” says lead researcher, Associate Professor Ute Vollmer-Conna of the University of New South Wales in Sydney, Australia.

“Even when they sleep, their stress-responsive neural systems are on high alert, signalling that it is not safe to relax. I think this condition may be understood by analogy to post-traumatic stress disorder, just that in CFS the original trauma is most likely a physiological, internal one, such as a severe infection.”

In a study of 30 patients with CFS and 40 healthy individuals, UNSW researchers recorded the heart beats of participants (via ECG) and analysed cardiac responses to cognitive challenges, and associations with mental performance outcomes.

The patients with CFS performed with similar accuracy, but they took significantly longer to complete the tests than people without the condition. They also had greater heart rate reactivity; low and unresponsive heart rate variability; and prolonged heart rate-recovery after the cognitive challenge.

Resting heart rate variability (an index of vagus nerve activity) was identified as the only significant predictor of cognitive outcomes, while current levels of fatigue and other symptoms did not relate to cognitive performance.

“This is the first demonstration of an association between reduced cardiac vagal tone and cognitive impairment in CFS. Our findings confirm previous reports of a significant loss of vagal modulation, which becomes particularly apparent when dealing with challenging tasks. The current results are consistent with the notion that CFS represents a ‘system under stress’,” Associate Professor Vollmer-Conna says.

The findings could lead to new ways to improve cognitive difficulties in people with CFS, including biofeedback assisted retraining of autonomic functioning, the researchers say.

Journal Reference: Alison Beaumont, Alexander R. Burton, Jim Lemon, Barbara K. Bennett, Andrew Lloyd, Uté Vollmer-Conna. Reduced Cardiac Vagal Modulation Impacts on Cognitive Performance in Chronic Fatigue Syndrome. PLoS ONE, 2012; 7 (11): e49518 DOI: 10.1371/journal.pone.0049518

 

Source: University of New South Wales. “Chronic fatigue syndrome: System under stress.” ScienceDaily. ScienceDaily, 15 November 2012. https://www.sciencedaily.com/releases/2012/11/121115133806.htm

 

Reduced cardiac vagal modulation impacts on cognitive performance in chronic fatigue syndrome

Abstract:

BACKGROUND: Cognitive difficulties and autonomic dysfunction have been reported separately in patients with chronic fatigue syndrome (CFS). A role for heart rate variability (HRV) in cognitive flexibility has been demonstrated in healthy individuals, but this relationship has not as yet been examined in CFS. The objective of this study was to examine the relationship between HRV and cognitive performance in patients with CFS.

METHODS: Participants were 30 patients with CFS and 40 healthy controls; the groups were matched for age, sex, education, body mass index, and hours of moderate exercise/week. Questionnaires were used to obtain relevant medical and demographic information, and assess current symptoms and functional impairment. Electrocardiograms, perceived fatigue/effort and performance data were recorded during cognitive tasks. Between-group differences in autonomic reactivity and associations with cognitive performance were analysed.

RESULTS: Patients with CFS showed no deficits in performance accuracy, but were significantly slower than healthy controls. CFS was further characterized by low and unresponsive HRV; greater heart rate (HR) reactivity and prolonged HR-recovery after cognitive challenge. Fatigue levels, perceived effort and distress did not affect cognitive performance. HRV was consistently associated with performance indices and significantly predicted variance in cognitive outcomes.

CONCLUSIONS: These findings reveal for the first time an association between reduced cardiac vagal tone and cognitive impairment in CFS and confirm previous reports of diminished vagal activity.

 

Source: Beaumont A, Burton AR, Lemon J, Bennett BK, Lloyd A, Vollmer-Conna U. Reduced cardiac vagal modulation impacts on cognitive performance in chronic fatigue syndrome. PLoS One. 2012;7(11):e49518. doi: 10.1371/journal.pone.0049518. Epub 2012 Nov 14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498107/ (Full article)

 

Neuroendocrine and immune contributors to fatigue

Abstract:

Central fatigue, a persistent and subjective sense of tiredness, generally correlates poorly with traditional markers of disease. It is frequently associated with psychosocial factors, such as depression, sleep disorder, anxiety, and coping style, which suggest that dysregulation of the body’s stress systems may serve as an underlying mechanism in the maintenance of chronic fatigue (CF).

This article addresses the endocrine, neural, and immune factors that contribute to fatigue and describes research regarding the role of these factors in chronic fatigue syndrome as a model for addressing the biology of CF. In general, hypoactivity of the hypothalamic-pituitary-adrenal axis, autonomic nervous system alterations characterized by sympathetic overactivity and low vagal tone, as well as immune abnormalities, may contribute to the expression of CF. Noninvasive methods for evaluating endocrine, neural, and immune function are also discussed.

Simultaneous evaluation of neuroendocrine and immune systems with noninvasive techniques will help elucidate the underlying interactions of these systems, their role in disease susceptibility, and progression of stress-related disorders.

Copyright (c) 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

 

Source: Silverman MN, Heim CM, Nater UM, Marques AH, Sternberg EM. Neuroendocrine and immune contributors to fatigue. PM R. 2010 May;2(5):338-46. doi: 10.1016/j.pmrj.2010.04.008. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933136/ (Full article)

 

Decreased vagal power during treadmill walking in patients with chronic fatigue syndrome

Abstract:

The purpose of this study was to determine if patients with the chronic fatigue syndrome have less vagal power during walking and rest periods following walking, in comparison to a group of healthy controls.

Eleven patients (ten women and one man) who fulfilled the case definition for chronic fatigue syndrome modified to reduce heterogeneity and eleven healthy, but sedentary, age- and sex-matched controls walked on a treadmill at 2.5 mph four times each for 4 min duration. Between each period of walking, subjects were given a 4-min seated rest period. Vagal power, a Fourier-based measure of cardiac, parasympathetic activity in the frequency range of 0.15 to 1.0 Hz, was computed.

In each period of walking and in one period of rest, patients had significantly less vagal power than the control subjects despite there being no significant group-wise differences in mean heart rate, tidal volume, minute volume, respiratory rate, oxygen consumption or total spectrum power. Further, patients had a significant decline in resting vagal power after periods of walking.

These results suggest a subtle abnormality in vagal activity to the heart in patients with the chronic fatigue syndrome and may explain, in part, their post-exertional symptom exacerbation.

 

Source: Cordero DL, Sisto SA, Tapp WN, LaManca JJ, Pareja JG, Natelson BH. Decreased vagal power during treadmill walking in patients with chronic fatigue syndrome. Clin Auton Res. 1996 Dec;6(6):329-33. http://www.ncbi.nlm.nih.gov/pubmed/8985621

 

Vagal tone is reduced during paced breathing in patients with the chronic fatigue syndrome

Abstract:

Patients with chronic fatigue syndrome (CFS) often complain of an inability to maintain activity levels and a variety of autonomic-like symptoms that make everyday activity intolerable at times. The purpose of the study was to determine if there were differences in vagal activity at fixed breathing rates in women with CFS.

Twelve women with the diagnosis of CFS between the ages of 32 and 59 years volunteered for the study. Healthy women, who were between the ages of 30 and 49, served as controls. Full signal electrocardiograph and respiratory signals were collected during a paced breathing protocol of three fixed breathing rates (8, 12 and 18 breaths/min) performed in the sitting and standing postures. Vagal activity was analyzed by means of heart rate spectral analysis to determine the subject’s response to specific breathing rates and postures. Heart rate variability was used as a non-invasive method of measuring the parasympathetic component of the autonomic nervous system.

Using this method, although there was significantly less vagal power in the sitting versus the standing postures for both groups, the overall vagal power was significantly lower (p < 0.034) in the CFS group versus healthy controls. Vagal power was also significantly lower (p < 0.01 to p < 0.05) at all breathing rates in both postures except while standing and breathing at 18 breaths/min. Knowledge of the differences in vagal activity for CFS patients may allow stratification for the analysis of other research variables.

 

Source: Sisto SA, Tapp W, Drastal S, Bergen M, DeMasi I, Cordero D, Natelson B. Vagal tone is reduced during paced breathing in patients with the chronic fatigue syndrome. Clin Auton Res. 1995 Jun;5(3):139-43. http://www.ncbi.nlm.nih.gov/pubmed/7549414