Cognitive assessment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a cognitive substudy of the multi-site clinical assessment of ME/CFS (MCAM)

Abstract:

Introduction: Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) experience cognitive problems with attention, information processing speed, working memory, learning efficiency, and executive function. Commonly, patients report worsening of cognitive symptoms over time after physical and/or cognitive challenges. To determine, monitor, and manage longitudinal decrements in cognitive function after such exposures, it is important to be able to screen for cognitive dysfunction and changes over time in clinic and also remotely at home. The primary objectives of this paper were: (1) to determine whether a brief computerized cognitive screening battery will detect differences in cognitive function between ME/CFS and Healthy Controls (HC), (2) to monitor the impact of a full-day study visit on cognitive function over time, and (3) to evaluate the impact of exercise testing on cognitive dysfunction.

Methods: This cognitive sub-study was conducted between 2013 and 2019 across seven U.S. ME/CFS clinics as part of the Multi-Site Clinical Assessment of ME/CFS (MCAM) study. The analysis included 426 participants (261 ME/CFS and 165 HC), who completed cognitive assessments including a computerized CogState Brief Screening Battery (CBSB) administered across five timepoints (T0-T4) at the start of and following a full day in-clinic visit that included exercise testing for a subset of participants (182 ME/CFS and 160 HC). Exercise testing consisted of ramped cycle ergometry to volitional exhaustion. The primary outcomes are performance accuracy and latency (performance speed) on the computerized CBSB administered online in clinic (T0 and T1) and at home (T2-T4).

Results: No difference was found in performance accuracy between ME/CFS and HCs whereas information processing speed was significantly slower for ME/CFS at most timepoints with Cohen’s d effect sizes ranging from 0.3-0.5 (p < 0.01). The cognitive decline over time on all CBSB tasks was similar for patients with ME/CFS independent of whether exercise testing was included in the clinic visit.

Conclusion: The challenges of a clinic visit (including cognitive testing) can lead to further cognitive deficits. A single short session of intense exercise does not further reduce speed of performance on any CBSB tasks.

Source: Lange G, Lin JS, Chen Y, Fall EA, Peterson DL, Bateman L, Lapp C, Podell RN, Natelson BH, Kogelnik AM, Klimas NG, Unger ER. Cognitive assessment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a cognitive substudy of the multi-site clinical assessment of ME/CFS (MCAM). Front Neurosci. 2024 Nov 1;18:1460157. doi: 10.3389/fnins.2024.1460157. PMID: 39554847; PMCID: PMC11565701. https://pmc.ncbi.nlm.nih.gov/articles/PMC11565701/ (Full text)

Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome

Abstract:

Background: The Stroop task was used to investigate differences in cognitive function between Long COVID (LC), Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and healthy control subjects.

Methods: Subjects viewed four color words or neutral (XXXX) stimuli with the same (congruent) or different color ink (incongruent). Cognitive conflict was inferred from response times for pairings of prestimuli and subsequent stimuli. Overall effects were assessed by univariate analysis with time courses determined for binned response times.

Results: LC and ME/CFS had significantly longer response times than controls indicating cognitive dysfunction. Initial response times were ranked LC > ME > HC, and decreased according to power functions. At the end of the task (900s), times were ranked LC = ME > HC. Response times were significantly slower for stimuli following an incongruent prestimulus. Time series for Stroop effect, facilitation, interference, surprise index and practice power law parameters were generally similar in LC, ME/CFS and HC suggesting comparable patterns for recruitment of cognitive resources. The prestimulus data were analyzed and generated positive Stroop and interference effects that were distinct from stimulus effects.

Conclusion: LC and ME/CFS have global slowing of response times that cannot be overcome by practice suggesting impaired communications between network nodes during problem solving. Analysis of matched prestimulus – stimulus effects adds a new dimension for understanding cognitive conflict.

Brief summary: Cognitive dysfunction in Long COVID and ME/CFS was demonstrated using the Stroop task which found global slowing of response times and limitations of practice effects.

Source: Baraniuk JN, Thapaliya K, Inderyas M, Shan ZY, Barnden LR. Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome. Sci Rep. 2024 Nov 5;14(1):26796. doi: 10.1038/s41598-024-75651-3. PMID: 39500939; PMCID: PMC11538523. https://pmc.ncbi.nlm.nih.gov/articles/PMC11538523/ (Full text)

Cognitive profile in multiple sclerosis and post-COVID condition: a comparative study using a unified taxonomy

Abstract:

Post-COVID condition (PCC) and multiple sclerosis (MS) share some clinical and demographic features, including cognitive symptoms and fatigue. Some pathophysiological mechanisms well-known in MS, such as autoimmunity, neuroinflammation and myelin damage, have also been implicated in PCC. In this study, we aimed to compare the cognitive phenotypes of two large cohorts of patients with PCC and MS, and to evaluate the relationship between fatigue and cognitive performance.

Cross-sectional study including 218 patients with PCC and 218 with MS matched by age, sex, and years of education. Patients were evaluated with a comprehensive neuropsychological protocol and were categorized according to the International Classification of Cognitive Disorders system. Fatigue and depression were also assessed.

Cognitive profiles of PCC and MS largely overlapped, with a greater impairment in episodic memory in MS, but with small effect sizes. The most salient deficits in both disorders were in attention and processing speed. The severity of fatigue was greater in patients with PCC. Still, the correlations between fatigue severity and neuropsychological tests were more prominent in the case of MS. There were no differences in the severity of depression among groups. Our study found similar cognitive profiles in PCC and MS. Fatigue was more severe in PCC, but was more associated with cognitive performance in MS. Further comparative studies addressing the mechanisms related to cognitive dysfunction and fatigue may be of interest to advance the knowledge of these disorders and develop new therapies.

Source: Delgado-Alonso C, Delgado-Alvarez A, Díez-Cirarda M, Oliver-Mas S, Cuevas C, Montero-Escribano P, Ramos-Leví AM, Gil-Moreno MJ, López-Carbonero JI, Hermann BP, Matias-Guiu J, Matias-Guiu JA. Cognitive profile in multiple sclerosis and post-COVID condition: a comparative study using a unified taxonomy. Sci Rep. 2024 Apr 29;14(1):9806. doi: 10.1038/s41598-024-60368-0. PMID: 38684843; PMCID: PMC11059260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059260/ (Full text)

Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects

Abstract:

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them.

To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level – OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01).

We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus.

In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients’ cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency.

This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

Source: Serrano Del Pueblo VM, Serrano-Heras G, Romero Sánchez CM, Piqueras Landete P, Rojas-Bartolome L, Feria I, Morris RGM, Strange B, Mansilla F, Zhang L, Castro-Robles B, Arias-Salazar L, López-López S, Payá M, Segura T, Muñoz-López M. Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects. Brain. 2024 Apr 2:awae101. doi: 10.1093/brain/awae101. Epub ahead of print. PMID: 38562097. https://pubmed.ncbi.nlm.nih.gov/38562097/

Impact of sleep disruption on cognitive function in patients with postacute sequelae of SARS-CoV-2 infection: initial findings from a Neuro-COVID-19 clinic

Abstract:

Introduction: Fatigue, brain fog, and sleep disturbance are among the most common symptoms of postacute sequelae of SARS-CoV-2 infection (PASC). We sought to determine the impact of sleep disruption on cognition and quality of life in patients with neurologic manifestations of PASC (Neuro-PASC).
Methods: Thirty-nine patients were recruited from Neuro-COVID-19 clinic. Mean age was 48.1 years, 71.8% were female, and 82% were never hospitalized for COVID-19. Patients were evaluated via clinical assessment, quality-of-life measures in domains of cognitive function, fatigue, sleep disturbance, anxiety, and depression, NIH Toolbox cognitive tests, and 7 days of wrist actigraphy.
Results: The median number of neurologic symptoms attributed to PASC was 6, with brain fog being the most common in 89.7%. Regarding non-neurologic symptoms, 94.9% complained of fatigue and 74.4% of insomnia. Patients reported significant impairment in all quality-of-life domains and performed worse in a task of attention compared to a normative US population. Actigraphy showed Neuro-PASC patients had lower sleep efficiency, longer sleep latency (both p < 0.001), and later sleep midpoint (p = 0.039) compared to 71 age-matched healthy controls with no PASC history. Self-reported cognitive symptoms correlated with the severity of fatigue (p < 0.001), anxiety (p = 0.05), and depression (p < 0.01). Objective evidence of sleep disruption measured by wakefulness after sleep onset, sleep efficiency, and latency were associated with decreased performance in attention and processing speed.
Conclusion: Prospective studies including larger populations of patients are needed to fully determine the interplay of sleep disruption on the cognitive function and quality of life of patients with PASC.

Source: Kathryn J Reid, Louis T Ingram, Millenia Jimenez, Zachary S Orban, Sabra M Abbott, Daniela Grimaldi, Kristen L Knutson, Phyllis C Zee, Igor J Koralnik, Mathew B Maas, Impact of sleep disruption on cognitive function in patients with postacute sequelae of SARS-CoV-2 infection: initial findings from a Neuro-COVID-19 clinic, SLEEP Advances, Volume 5, Issue 1, 2024, zpae002, https://doi.org/10.1093/sleepadvances/zpae002 https://academic.oup.com/sleepadvances/article/5/1/zpae002/7517273 (Full text)

Long COVID is associated with severe cognitive slowing: a multicentre cross-sectional study

Abstract:

Background: COVID-19 survivors may experience a wide range of chronic cognitive symptoms for months or years as part of post-COVID-19 conditions (PCC). To date, there is no definitive objective cognitive marker for PCC. We hypothesised that a key common deficit in people with PCC might be generalised cognitive slowing.

Methods: To examine cognitive slowing, patients with PCC completed two short web-based cognitive tasks, Simple Reaction Time (SRT) and Number Vigilance Test (NVT). 270 patients diagnosed with PCC at two different clinics in UK and Germany were compared to two control groups: individuals who contracted COVID-19 before but did not experience PCC after recovery (No-PCC group) and uninfected individuals (No-COVID group). All patients with PCC completed the study between May 18, 2021 and July 4, 2023 in Jena University Hospital, Jena, Germany and Long COVID clinic, Oxford, UK.

Findings: We identified pronounced cognitive slowing in patients with PCC, which distinguished them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. Cognitive slowing was evident even on a 30-s task measuring simple reaction time (SRT), with patients with PCC responding to stimuli ∼3 standard deviations slower than healthy controls. 53.5% of patients with PCC’s response speed was slower than 2 standard deviations from the control mean, indicating a high prevalence of cognitive slowing in PCC. This finding was replicated across two clinic samples in Germany and the UK. Comorbidities such as fatigue, depression, anxiety, sleep disturbance, and post-traumatic stress disorder did not account for the extent of cognitive slowing in patients with PCC. Furthermore, cognitive slowing on the SRT was highly correlated with the poor performance of patients with PCC on the NVT measure of sustained attention.

Interpretation: Together, these results robustly demonstrate pronounced cognitive slowing in people with PCC, which distinguishes them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. This might be an important factor contributing to some of the cognitive impairments reported in patients with PCC.

Source: Zhao S, Martin EM, Reuken PA, Scholcz A, Ganse-Dumrath A, Srowig A, Utech I, Kozik V, Radscheidt M, Brodoehl S, Stallmach A, Schwab M, Fraser E, Finke K, Husain M. Long COVID is associated with severe cognitive slowing: a multicentre cross-sectional study. EClinicalMedicine. 2024 Jan 25;68:102434. doi: 10.1016/j.eclinm.2024.102434. PMID: 38318123; PMCID: PMC10839583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839583/ (Full text)

Impact of sleep disruption on cognitive function in patients with post-acute sequelae of SARS-CoV-2 infection: Initial findings from a Neuro-COVID-19 clinic

Abstract:

Introduction: Fatigue, brain fog and sleep disturbance are among the most common symptoms of post-acute sequelae of SARS-CoV-2 infection (PASC). We sought to determine the impact of sleep disruption on cognition and quality-of-life in patients with neurologic manifestations of PASC (Neuro-PASC).

Methods: Thirty-nine patients were recruited from Neuro-COVID-19 clinic. Mean age was 48.1 years, 71.8% were female, and 82% were never hospitalized for COVID-19. Patients were evaluated via clinical assessment, quality-of-life measures in domains of cognitive function, fatigue, sleep disturbance, anxiety, and depression, NIH toolbox cognitive tests, and 7 days of wrist actigraphy.

Results: The median number of neurologic symptoms attributed to PASC was 6, with brain fog being the most common in 89.7%. Regarding non-neurologic symptoms, 94.9% complained of fatigue and 74.4% of insomnia. Patients reported significant impairment in all quality-of-life domains and performed worse in a task of attention compared to a normative US population. Actigraphy showed Neuro-PASC patients had lower sleep efficiency, longer sleep latency (both p<0.001) and later sleep midpoint (p=0.039) compared to 71 age-matched healthy controls with no PASC history. Self-reported cognitive symptoms correlated with severity of fatigue (p<0.001), anxiety (p=0.05), and depression (p<0.01). Objective evidence of sleep disruption measured by wakefulness after sleep onset, sleep efficiency and latency were associated with decreased performance in attention and processing speed.

Conclusion: Prospective studies including larger populations of patients are needed to fully determine the interplay of sleep disruption on the cognitive function and quality of life of patients with PASC.

Source: Kathryn J Reid, Louis T Ingram, Millenia Jimenez, Zachary S Orban, Sabra M Abbott, Daniela Grimaldi, Kristen L Knutson, Phyllis C Zee, Igor J Koralnik, Mathew B Maas, Impact of sleep disruption on cognitive function in patients with post-acute sequelae of SARS-CoV-2 infection: Initial findings from a Neuro-COVID-19 clinic, SLEEP Advances, 2024;, zpae002, https://doi.org/10.1093/sleepadvances/zpae002 https://academic.oup.com/sleepadvances/advance-article/doi/10.1093/sleepadvances/zpae002/7517273 (Full text available as PDF file)

COVID-19 and Cognitive Function: Evidence for Increased Processing Speed Variability in COVID-19 Survivors and Multifaceted Impairment with LongCOVID Symptoms

Abstract:

Background: There is increasing evidence for cognitive function to be negatively impacted by COVID-19. There is, however, limited research evaluating cognitive function pre- and postCOVID-19 using objective measures.

Methods: We examined processing speed, attention, working memory, executive function and memory in adults (≤69 years) with a history of COVID-19 (n=129; assessed ≥20 days after diagnosis, none acutely unwell), compared to those with no known history of COVID-19 (n=93). We also examined cognitive changes in a sub-group of COVID (n=30) and non-COVID (n=33) participants, compared to their pre-COVID-19 pandemic level (data available through the MyCognition database).

Results: Cross-sectionally, the COVID group showed significantly larger intra-individual variability in processing speed, compared to the non-COVID group. The COVID sub-group also showed significantly larger intra-individual variability in processing speed, compared to their
pre-COVID level; no significant change occurred in non-COVID participants over the same time scale. Other cognitive indices were not significantly impacted in the cross-sectional or withinsubjects investigations, but participants (n=20) who had needed hospitalisation due to COVID19 showed poor attention and executive function relative to those who had not required hospitalisation (n=109). Poor health and long-COVID symptoms  correlated with poor cognitive function across domains in the COVID group.

Conclusions: The findings indicate a limited cognitive impact of COVID-19 with only intraindividual variability in processing speed being significantly impacted in an adult UK sample. However, those who required hospitalisation due to COVID-19 severity and/or experience long-COVID symptoms display multifaceted cognitive impairment and may benefit from repeated cognitive assessments and remediation efforts.

Source: Vakani K, Ratto M, Sandford-James A, Antonova E, Kumari V. COVID-19 and Cognitive Function: Evidence for Increased Processing Speed Variability in COVID-19 Survivors and Multifaceted Impairment with Long-COVID Symptoms. Eur Psychiatry. 2023 May 12:1-34. doi: 10.1192/j.eurpsy.2023.25. Epub ahead of print. PMID: 37170616. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/AE8EFA3BF7DC84334EEBC3039427801C/S0924933823000251a.pdf/covid-19-and-cognitive-function-evidence-for-increased-processing-speed-variability-in-covid-19-survivors-and-multifaceted-impairment-with-long-covid-symptoms.pdf (Full text available as PDF file)

Neurologic manifestations of long COVID differ based on acute COVID-19 severity

Abstract:

Objective: To characterize neurologic manifestations in post-hospitalization Neuro-PASC (PNP) and non-hospitalized Neuro-PASC (NNP) patients.

Methods: Prospective study of the first 100 consecutive PNP and 500 NNP patients evaluated at a Neuro-COVID-19 clinic between 5/2020 and 8/2021.

Results: PNP were older than NNP patients (mean 53.9 vs 44.9 y; p < 0.0001) with a higher prevalence of pre-existing comorbidities. An average 6.8 months from onset, the main neurologic symptoms were “brain fog” (81.2%), headache (70.3%), and dizziness (49.5%) with only anosmia, dysgeusia and myalgias being more frequent in the NNP compared to the PNP group (59 vs 39%, 57.6 vs 39% and 50.4 vs 33%, all p < 0.003). Moreover, 85.8% of patients experienced fatigue. PNP more frequently had an abnormal neurologic exam than NNP patients (62.2 vs 37%, p < 0.0001). Both groups had impaired quality of life in cognitive, fatigue, sleep, anxiety, and depression domains. PNP patients performed worse on processing speed, attention, and working memory tasks than NNP patients (T-score 41.5 vs 55, 42.5 vs 47 and 45.5 vs 49, all p < 0.001) and a US normative population. NNP patients had lower results in attention task only. Subjective impression of cognitive ability correlated with cognitive test results in NNP but not in PNP patients.

Interpretation: PNP and NNP patients both experience persistent neurologic symptoms affecting their quality of life. However, they harbor significant differences in demographics, comorbidities, neurologic symptoms and findings, as well as pattern of cognitive dysfunction. Such differences suggest distinct etiologies of Neuro-PASC in these populations warranting targeted interventions.

Source: Perez Giraldo GS, Ali ST, Kang AK, Patel TR, Budhiraja S, Gaelen JI, Lank GK, Clark JR, Mukherjee S, Singer T, Venkatesh A, Orban ZS, Lim PH, Jimenez M, Miller J, Taylor C, Szymanski AL, Scarpelli J, Graham EL, Balabanov RD, Barcelo BE, Cahan JG, Ruckman K, Shepard AG, Slutzky MW, LaFaver K, Kumthekar PU, Shetty NK, Carroll KS, Ho SU, Lukas RV, Batra A, Liotta EM, Koralnik IJ. Neurologic manifestations of long COVID differ based on acute COVID-19 severity. Ann Neurol. 2023 Mar 26. doi: 10.1002/ana.26649. Epub ahead of print. PMID: 36966460. https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.26649 (Full text available as PDF file)

 

The Conners Continuous Performance Test CPT3™: Is it a reliable marker to predict neurocognitive dysfunction in Myalgic encephalomyelitis/chronic fatigue syndrome?

Introduction: The main objective is to delimit the cognitive dysfunction associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) in adult patients by applying the Continuous Performance Test (CPT3). Additionally, provide empirical evidence on the usefulness of this computerized neuropsychological test to assess ME/CFS.

Method: The final sample (n = 225; 158 Patients/67 Healthy controls) were recruited in a Central Sensitization Syndromes (CSS) specialized unit in a tertiary hospital. All participants were administered this neuropsychological test.

Results: There were significant differences between ME/CFS and healthy controls in all the main measures of CPT3. Mainly, patients had a worse indicator of inattentiveness, sustained attention, vigilance, impulsivity, slow reaction time, and more atypical T-scores, which is associated with a likelihood of having a disorder characterized by attention deficits, such as Attention Deficit Hyperactivity Disorder (ADHD). In addition, relevant correlations were obtained between the CPT3 variables in the patient’s group. The most discriminative indicators of ME/CFS patients were Variability and Hit Reaction Time, both measures of response speed.

Conclusion: The CPT3 is a helpful tool to discriminate neurocognitive impairments from attention and response speed in ME/CFS patients, and it could be used as a marker of ME/CFS severity for diagnosing or monitoring this disease.

Source: Fernández-Quirós J, Lacasa-Cazcarra M, Alegre-Martín J, Sanmartín-Sentañes R, Almirall M, Launois-Obregón P, Castro-Marrero J, Rodríguez-Urrutia A, Navarro-Sanchis JA and Ramos-Quiroga JA (2023) The Conners Continuous Performance Test CPT3: Is it a reliable marker to predict neurocognitive dysfunction in Myalgic encephalomyelitis/chronic fatigue syndrome? Front. Psychol. 14:1127193. doi: 10.3389/fpsyg.2023.1127193 https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1127193/full (Full text)