Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study

Abstract:

Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a multisystem chronic illness characterized by severe muscle fatigue, pain, dizziness, and brain fog. Many patients with ME/CFS experience orthostatic intolerance (OI), which is characterized by frequent dizziness, light-headedness, and feeling faint while maintaining an upright posture.
Despite intense investigation, the molecular mechanism of this debilitating condition is still unknown. OI is often manifested by cardiovascular alterations, such as reduced cerebral blood flow, reduced blood pressure, and diminished heart rate. The bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of endothelial nitric oxide synthase (eNOS) enzyme, is tightly coupled with cardiovascular health and circulation.
To explore the role of BH4 in ME/CFS, serum samples of CFS patients (n = 32), CFS patients with OI only (n = 10; CFS + OI), and CFS patients with both OI and small fiber polyneuropathy (n = 12; CFS + OI + SFN) were subjected to BH4 ELISA. Interestingly, our results revealed that the BH4 expression is significantly high in CFS, CFS + OI, and CFS + OI + SFN patients compared to age-/gender-matched controls.
Finally, a ROS production assay in cultured microglial cells followed by Pearson correlation statistics indicated that the elevated BH4 in serum samples of CFS + OI patients might be associated with the oxidative stress response. These findings suggest that the regulation of BH4 metabolism could be a promising target for understanding the molecular mechanism of CFS and CFS with OI.
Source: Gottschalk CG, Whelan R, Peterson D, Roy A. Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study. International Journal of Molecular Sciences. 2023; 24(10):8713. https://doi.org/10.3390/ijms24108713 (Full text)

Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

OBJECTIVES/GOALS: Strong evidence has implicated oxidative stress (OS) as a disease mechanism in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The study aim was to assess whether a C>T single nucleotide polymorphism (SNP) (rs1800668), which reduces the activity of glutathione peroxidase 1 (GPX1), is associated with brain OS in patients with ME/CFS.

METHODS/STUDY POPULATION: Study population: The study enrolled 20 patients with ME/CFS diagnosed according to Canadian Consensus Criteria, and 11 healthy control (HC) subjects. Genotyping: DNA was extracted from whole blood samples, amplified by PCR, and purified. Sanger sequencing was used for genotyping. 1H MRS: Proton magnetic resonance spectroscopy (1H MRS) was used to measure levels of glutathione (GSH) a primary tissue antioxidant and OS marker in a 3x3x2 cm3 occipital cortex (OCC) voxel. GSH spectra were recorded in 15 minutes with the standard J-editing technique. The resulting GSH peak area was normalized to tissue water level in the voxel. Statistical Analysis: T-tests were used to compare OCC GSH levels between ME/CFS and HC groups, and between the study’s genotype groups (group 1: CC, group 2: combined TC and TT).

RESULTS/ANTICIPATED RESULTS: Clinical characteristics: ME/CFS and HC groups were comparable on age and BMI but not on sex (p = 0.038). Genotype frequencies: Genotype frequencies in the ME/CFS group were 0.55 (CC), 0.25 (TC) and 0.2 (TT); and 0.636 (CC), 0.364 (TC), and 0 (TT) in the HC group. GSH levels: There was a trend-level lower mean OCC GSH in ME/CFS than in HC (0.0015 vs 0.0017; p = 0.076). GSH levels by genotype group interaction: Within the ME/CFS group but not in the combined ME/CFS and HC group or HC group alone, GSH levels were lower in the TC and TT genotypes than in CC genotypes (0.00143 vs 0.00164; p = 0.018).

DISCUSSION/SIGNIFICANCE: This study found that the presence of a C>T SNP in GPX1 is associated with lower mean GSH levels and, hence, brain oxidative stress, in ME/CFS patients. If validated in a larger cohort, this finding may support targeted antioxidant therapy based on their genotype as a potentially effective treatment for patients with ME/CFS.

Source: Hampilos, N., Germain, A., Mao, X., Hanson, M., & Shungu, D. (2023). 474 Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical and Translational Science, 7(S1), 137-138. doi:10.1017/cts.2023.488. DOI: https://doi.org/10.1017/cts.2023.488

Changes in the State of Vital Systems with Long COVID-19

Abstract:

Long COVID-19 is a chronic disease that continues to be studied. Data on epidemiology and the main symptoms typical for long COVID-19 are presented. Issues related to the pathogenesis of the disease are discussed. At the same time, special attention is paid to the inflammation process (including of the vascular wall endothelium), the state of the immune system (cytokine storm), the hemostasis system (the mechanism for the development of microangiopathy and thrombosis), and oxidative stress. During the analysis, a special place is given to central nervous system disorders (including organic brain damage) and disorders of cognitive functions. In addition, currently known complications from the cardiovascular system and respiratory organs are described. The treatment and rehabilitation of patients with long COVID-19 is not only a medical, but also a significant social problem.

Source: Kuznik, B.I., Shapovalov, K.G. & Chalisova, N.I. Changes in the State of Vital Systems with Long COVID-19. Biol Bull Rev 13, 112–123 (2023). https://doi.org/10.1134/S2079086423020044 (Full text)

Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior

Abstract:

Prion is a term used to describe a protein infectious particle responsible for several neurodegenerative diseases in mammals, e.g., Creutzfeldt-Jakob disease. The novelty is that it is protein based infectious agent not involving a nucleic acid genome as found in viruses and bacteria.

Prion disorders exhibit, in part, incubation periods, neuronal loss, and induce abnormal folding of specific normal cellular proteins due to enhancing reactive oxygen species associated with mitochondria energy metabolism. These agents may also induce memory, personality and movement abnormalities as well as depression, confusion and disorientation.

Interestingly, some of these behavioral changes also occur in COVID-19 and mechanistically include mitochondrial damage caused by SARS-CoV-2 and subsequent production of reactive oxygen species. Taken together, we surmise, in part, long COVID may involve the induction of spontaneous prion emergence, especially in individuals susceptible to its origin may thus explain some of its manisfestions post-acute viral infection.

Source: Stefano GB, Büttiker P, Weissenberger S, Anders M, Raboch J, Ptacek R, Kream RM. Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior. Cell Mol Neurobiol. 2023 Mar 28:1–6. doi: 10.1007/s10571-023-01342-8. Epub ahead of print. PMID: 36977809; PMCID: PMC10047479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047479/ (Full text)

LC, POTS, and ME/CFS: Lifting the Fog

Abstract:

These three syndromes – long covid (LC), postural orthostatic tachycardia syndrome (POTS), and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) – have many symptoms in common. The common denominator remains elusive.
The blood brain barrier (BBB) has been a barrier not only to microbes and toxins but also to understanding pathogenetic links. There are several areas within the brain that have no BBB. These are known as circumventricular organs (CVOs) and their location relative to CNS nuclei that direct autonomic and neuroendocrine functions is provocative in the quest for pathogenesis.
In addition the majority afflicted with LC and ME/CFS appear to be those with two MTHFR polymorphisms, present in over 50% of Americans. These polymorphisms elevate homocysteine. When homocysteine is combined with CVOs, the fog of POTS and its paradox are lifted. POTS may represent the intersection of LC and ME/CFS in those with the MTHFR gene (hypermethylation or 677TT).
The gut microbiomes of LC and ME/CFS, deficient in butyrates, GABA, and diversity, are then linked with MTHFR genotype 677TT. Reactivation of neurotropic EBV and VZV, due to loss of surveillance by CD4+/CD8+ T cells, is seen as secondary. The oxidative stress generated by homocysteine, loss of glutathione, low fiber diet, and persistent chronic inflammation exhaust available mitochondria and, assisted by BKN and estrogen, exacerbate all the elements of these post viral fatigue syndromes.
Source: Chambers, P. LC, POTS, and ME/CFS: Lifting the Fog. Preprints.org 2023, 2023030418. https://doi.org/10.20944/preprints202303.0418.v1 (Full text available as PDF file)

Increased insulin resistance due to Long COVID is associated with depressive symptoms and partly predicted by the inflammatory response during acute infection

Abstract:

Background: Some months after the remission of acute COVID-19, some individuals show depressive symptoms, which are predicted by increased peak body temperature (PBT) and decreased blood oxygen saturation (SpO2). No data indicate whether Long COVID is associated with increased insulin resistance (IR) in association with neuroimmune and oxidative (NIO) processes.

Methods: This case control and retrospective cohort study used the homeostasis Model Assessment 2 (HOMA2) calculator© to compute β-cell function, insulin sensitivity and resistance (HOMA2-IR) and measured the Beck Depression Inventory (BDI) and the Hamilton Depression Rating Scale (HAMD) in 86 Long COVID patients and 39 controls.

Results: Long COVID (3-4 months after the acute infection) is accompanied by increased HOMA2-IR, fasting blood glucose, and insulin levels; 33.7% of the patients versus 0% of the controls had HOMA2-IR values >1.8, suggesting IR. Increased IR was predicted by PBT during acute infection, and associated with depressive symptoms above and beyond the effects of NIO pathways (NLRP3 inflamasome, myeloperoxidase, protein oxidation). There were no significant associations between increased IR and the activated NIO pathways during Long COVID.

Conclusion: Long COVID is associated with new-onset IR which may contribute to the onset of depressive symptoms due to Long COVID by enhancing overall neurotoxicity.

Source: Al-Hakeim HK, Al-Rubaye HT, Jubran AS, Almulla AF, Moustafa SR, Maes M. Increased insulin resistance due to Long COVID is associated with depressive symptoms and partly predicted by the inflammatory response during acute infection. Braz J Psychiatry. 2023 Mar 14. doi: 10.47626/1516-4446-2022-3002. Epub ahead of print. PMID: 36917827. https://pubmed.ncbi.nlm.nih.gov/36917827/ 

Antioxidants and Long Covid

Abstract:

Long Covid has many symptoms that overlap with ME(myalgic encephalomyelitis)/CFS(chronic fatigue syndrome), FM(fibromyalgia), EBV(Epstein-Barr virus), CMV(cytomegalovirus), CIRS (chronic inflammatory response syndrome), MCAS(mast cell activation syndrome), POTS(postural orthostatic tachycardia syndrome), and post viral fatigue syndrome. They all portend a “long haul” with an antioxidant shortfall and elevated Ca:Mg. Oxidative stress is the root cause.

Linkage between TGF(transforming growth factor)-β, IFN(interferon)-γ, the RAS(renin angiotensin system), and the KKS(kallikrein kinin system) is discussed. Technical explanations for the renin aldosterone paradox in POTS, the betrayal of TGF-β, and the commonality of markers for the Warburg effect are offered. The etiology of the common Long Covid symptoms of post exertional malaise, fatigue, and brain fog as well as anosmia, hair loss, and GI symptoms is technically discussed. Ca:Mg is critical to the glutamate/GABA balance. The role of GABA and butyrates from the “good” intestinal bacteria in the gut-brain axis and its correlation with chronic fatigue diseases are explored.

The crosstalk between the ENS(enteric nervous system) and the ANS(autonomic nervous system) and the role of the vagus in both are emphasized. HRV(heart rate variability), the fifth vital sign, points to an expanded gut-brain-heart/lung axis. A suggested approach to all of these – Long Covid, chronic fatigue diseases, post viral fatigue syndrome, and general health – is presented.

Source: Chambers, P. Antioxidants and Long Covid. Preprints 2022, 2022100195 (doi: 10.20944/preprints202210.0195.v1).  https://www.preprints.org/manuscript/202210.0195/v1 (Full text available as PDF file)

Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems

Abstract:

Purpose of review: Long-COVID syndrome is a multi-organ disorder that persists beyond 12 weeks post-acute SARS-CoV-2 infection (COVID-19). Here, we provide a definition for this syndrome and discuss neuro-cardiology involvement due to the effects of (1) angiotensin-converting enzyme 2 receptors (the entry points for the virus), (2) inflammation, and (3) oxidative stress (the resultant effects of the virus).

Recent findings: These effects may produce a spectrum of cardio-neuro effects (e.g., myocardial injury, primary arrhythmia, and cardiac symptoms due to autonomic dysfunction) which may affect all systems of the body. We discuss the symptoms and suggest therapies that target the underlying autonomic dysfunction to relieve the symptoms rather than merely treating symptoms. In addition to treating the autonomic dysfunction, the therapy also treats chronic inflammation and oxidative stress. Together with a full noninvasive cardiac workup, a full assessment of the autonomic nervous system, specifying parasympathetic and sympathetic (P&S) activity, both at rest and in response to challenges, is recommended. Cardiac symptoms must be treated directly. Cardiac treatment is often facilitated by treating the P&S dysfunction. Cardiac symptoms of dyspnea, chest pain, and palpitations, for example, need to be assessed objectively to differentiate cardiac from neural (autonomic) etiology. Long-term myocardial injury commonly involves P&S dysfunction. P&S assessment usually connects symptoms of Long-COVID to the documented autonomic dysfunction(s).

Source: DePace NL, Colombo J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep. 2022 Sep 30:1–16. doi: 10.1007/s11886-022-01786-2. Epub ahead of print. PMID: 36178611; PMCID: PMC9524329.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524329/ (Full text)

The significance of oxidative stress in the pathophysiology of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Long COVID is now well accepted as an ongoing post-viral syndrome resulting from infection of a single virus, the pandemic SARS-CoV-2. It mirrors the post-viral fatigue syndrome, Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome, a global debilitating illness arising mainly from sporadic geographically-specific viral outbreaks, and from community endemic infections, but also from other stressors. Core symptoms of both syndromes are post-exertional malaise (a worsening of symptoms following mental or physical activity), pervasive fatigue, cognitive dysfunction (brain fog), and sleep disturbance. Long COVID patients frequently also suffer from shortness of breath, relating to the lung involvement of the SARS-CoV-2 virus.

There is no universally accepted pathophysiology, or recognized biomarkers yet for Long COVID or indeed for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Clinical case definitions with very similar characteristics for each have been defined. Chronic inflammation, immune dysfunction, and disrupted energy production in the peripheral system has been confirmed in Long COVID and has been well documented in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

Neuroinflammation occurs in the brain in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome as shown from a small number of positron emission tomography and magnetic resonance spectroscopy studies, and has now been demonstrated for Long COVID. Oxidative stress, an increase in reactive oxygen and reactive nitrogen species, and free radicals, has long been suggested as a potential cause for many of the symptoms seen in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, resulting from both activation of the brain’s immune system and dysregulation of mitochondrial function throughout the body. The brain as a high producer of energy may be particularly susceptible to oxidative stress. It has been shown in peripheral immune cells that the balanced production of proteins involved in regulation of the reactive oxygen species in mitochondria is disturbed in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Fluctuations in the chronic low level neuroinflammation during the ongoing course of Long COVID as well as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome have been proposed to cause the characteristic severe relapses in patients.

This review explores oxidative stress as a likely significant contributor to the pathophysiology of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, and the mechanisms by which oxidative stress could cause the symptoms seen in both syndromes. Treatments that could mitigate oxidative stress and thereby lessen the debilitating symptoms to improve the life of patients are discussed.

Source: WALKER, Max Oliver Mackay et al. The significance of oxidative stress in the pathophysiology of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Medical Research Archives, [S.l.], v. 10, n. 9, sep. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3050>. Date accessed: 09 oct. 2022. doi: https://doi.org/10.18103/mra.v10i9.3050.

Polyphenols as possible alternative agents in chronic fatigue: a review

Abstract:

Chronic fatigue syndrome (CFS) is a pathological state of extreme tiredness that lasts more than six months and may possess an impact on the social, emotional, or occupational functioning of an individual. CFS is characterized by profound disabling fatigue associated with infectious, rheumatological, and neurological symptoms.

The current pharmacological treatment for CFS does not offer a complete cure for the disease, and none of the available treatments show promising results.

The exact mechanism of the pathogenesis of the disease is still unknown, with current suggestions indicating the overlapping roles of the immune system, central nervous system, and neuroendocrine system.

However, the pathological mechanism revolves around inflammatory and oxidative stress markers.

Polyphenols are the most abundant secondary metabolites of plant origin, with potent antioxidant and anti-inflammatory effects, and can exert protective activity against a whole range of disorders.

The current review is aimed at highlighting the emerging role of polyphenols in CFS from both preclinical and clinical studies. Numerous agents of this class have shown promising results in different in vitro and in vivo models of chronic fatigue/CFS, predominantly by counteracting oxidative stress and the inflammatory cascade.

The clinical data in this regard is still very limited and needs expanding through randomized, placebo-controlled studies to draw final conclusions on whether polyphenols may be a class of clinically effective nutraceuticals in patients with CFS.

Source: Ullah, H., Khan, A., Riccioni, C. et al. Polyphenols as possible alternative agents in chronic fatigue: a review. Phytochem Rev (2022). https://doi.org/10.1007/s11101-022-09838-9 (Full text)