Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases?

Abstract:

It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as ‘self’, and otherwise immunologically silent.

The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies.

A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.

Source: Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J. 2023 Aug 16;480(15):1217-1240. doi: 10.1042/BCJ20230241. PMID: 37584410. https://portlandpress.com/biochemj/article/480/15/1217/233389/Are-fibrinaloid-microclots-a-cause-of-autoimmunity (Full text)

Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior

Abstract:

Prion is a term used to describe a protein infectious particle responsible for several neurodegenerative diseases in mammals, e.g., Creutzfeldt-Jakob disease. The novelty is that it is protein based infectious agent not involving a nucleic acid genome as found in viruses and bacteria.

Prion disorders exhibit, in part, incubation periods, neuronal loss, and induce abnormal folding of specific normal cellular proteins due to enhancing reactive oxygen species associated with mitochondria energy metabolism. These agents may also induce memory, personality and movement abnormalities as well as depression, confusion and disorientation.

Interestingly, some of these behavioral changes also occur in COVID-19 and mechanistically include mitochondrial damage caused by SARS-CoV-2 and subsequent production of reactive oxygen species. Taken together, we surmise, in part, long COVID may involve the induction of spontaneous prion emergence, especially in individuals susceptible to its origin may thus explain some of its manisfestions post-acute viral infection.

Source: Stefano GB, Büttiker P, Weissenberger S, Anders M, Raboch J, Ptacek R, Kream RM. Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior. Cell Mol Neurobiol. 2023 Mar 28:1–6. doi: 10.1007/s10571-023-01342-8. Epub ahead of print. PMID: 36977809; PMCID: PMC10047479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047479/ (Full text)

SARS-CoV-2, long COVID, prion disease and neurodegeneration

Introduction:

On the last day of the year 2019 a novel Betacoronavirus (2019-nCov), now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and causing the highly transmissible and lethal pneumonia COVID-19 was first reported in Wuhan, Hubei Province in Central China (Huang et al., ; Fu et al., ; Lu and Sun, ). Since then ongoing research and long-term studies of the sequelae of SARS-CoV-2 infection have indicated that post-infection, recovery from COVID-19 and/or COVID-19 aftermath is associated with long-term physiological and neurological deficits known generically as “long COVID” (Roy et al., ; Ahmad et al., ; Baazaoui and Iqbal, ). Multiple independent epidemiological and clinical studies further indicate that SARS-CoV-2 infection and “long COVID” strongly correlate with the onset of progressive neurological disturbances that include Alzheimer’s disease (AD), prion disease (PrD) and other neurodegenerative disorders. These are apparent: (i) especially in aged and/or senile COVID-19 patients; (ii) in patients experiencing overlapping or inter-current illnesses that include heart disease, diabetes, hypertension, neuropsychiatric and other age-related neurological disorders; and (iii) in those COVID-19 patients who have experienced a particularly virulent and/or a near fatal episode of SARS-CoV-2 infection (Farheen et al., ; Flud et al., ; Fu et al., ). Conversely, increasing numbers of epidemiological studies suggest that elderly people with neurological deficits commonly observed in AD are highly vulnerable to SARS-CoV-2 infection, and especially the development of more severe forms of COVID-19 disease (Chiricosta et al., ; Hsu et al., ; Fu et al., ). The recent finding that the SARS-CoV-2 “S1” spike protein essential for viral infectivity contains prion-like domains associated with immune-evasion and the promotion of protein aggregation and aggregate “seeding” is particularly intriguing (Baazaoui and Iqbal, ; Bernardini et al., ; Tetz and Tetz, ). Based on these and other very recent findings this “Opinion” paper will: (i) address our current understanding of the emerging role of SARS-CoV-2 infection with “long COVID” with special reference to AD and PrD; (ii) will review the latest findings of the SARS-CoV-2 “S1” spike protein and its preferred interaction with the ubiquitous angiotensin converting enzyme-2 (ACE2) receptor (ACE2R); and (iii) will highlight the interplay of the molecular biology and neuropathology of SARS-CoV-2 with the unusual and immune-evasive character of prion neurobiology, AD and PrD.

Read the rest of this article HERE.

Source: Zhao Y, Jaber VR, Lukiw WJ. SARS-CoV-2, long COVID, prion disease and neurodegeneration. Front Neurosci. 2022 Sep 27;16:1002770. doi: 10.3389/fnins.2022.1002770. PMID: 36238082; PMCID: PMC9551214.  Zhao Y, Jaber VR, Lukiw WJ. SARS-CoV-2, long COVID, prion disease and neurodegeneration. Front Neurosci. 2022 Sep 27;16:1002770. doi: 10.3389/fnins.2022.1002770. PMID: 36238082; PMCID: PMC9551214. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9551214/ (Full text)