Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Post-COVID Syndrome: A Common Neuroimmune Ground?

Abstract:

A Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology under growing interest now in view of the increasingly recognized post-COVID syndrome as a new entity with similar clinical presentation.

We performed the first cross-sectional study of ME/CFS in community population in Russia and then described and compared some clinical and pathophysiological characteristics of ME/CFS and post-COVID syndrome as neuroimmune disorders.

Of the cohort of 76 individuals who suggested themselves suffering from ME/CFS 56 subsequently were confirmed as having CFS/ME according to ≥1 of the 4 most commonly used case definition.

Of the cohort of 14 individuals with post-COVID-19 syndrome 14 met diagnostic criteria for ME/CFS. The prevalence of clinically expressed and subclinical anxiety and depression in ME / CFS and post-COVID ME/CFS did not differ significantly from that in healthy individuals.

Severity of anxiety / depressive symptoms did not correlate with the severity of fatigue neigther in ME / CFS nor in post-COVID ME/CFS, but the positive correlation was found between the severity of fatigue and 20 other symptoms of ME / CFS related to the domains of “post-exertional exhaustion”, “immune dysfunction”, “sleep disturbances”, “dysfunction of the autonomic nervous system”, “neurological sensory / motor disorders” and “pain syndromes”.

Immunological abnormalities were identified in 12/12 patients with ME / CFS according to the results of laboratory testing.

The prevalence of postural orthostatic tachycardia assessed by the active standing test was 37.5% in ME / CFS and 75.0% in post-COVID ME/CFS (the latter was higher than in healthy controls, p = 0.02).  There was a more pronounced increase in heart rate starting from the 6th minute of the test in post-COVID ME/CFS compared with the control group.

Assessment of the functional characteristics of microcirculation by laser doppler flowmetry revealed obvious and very similar changes in ME/CFS and post-COVID ME/CFS compared to the healthy controls.  The identified pattern corresponded to the hyperemic form of microcirculation disorders, usually observed in acute inflammatory processes or in deficiency of systemic vasoconstriction influences.

Source: Ryabkova, V.A.; Gavrilova, N.Y.; Fedotkina, T.V.; Churilov, L.P.; Shoenfeld, Y. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Post-COVID Syndrome: A Common Neuroimmune Ground?. Preprints 2022, 2022090289 (doi: 10.20944/preprints202209.0289.v1) https://www.preprints.org/manuscript/202209.0289/v1 (Full study available as PDF file)

Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multisystemic disease of unknown etiology, affecting thousands of individuals worldwide. Its diagnosis still relies on ruling out medical problems leading to unexplained fatigue due to a complete lack of disease-specific biomarkers. Our group and others have explored the potential value of microRNA profiles (miRNomes) as diagnostic tools for this disease. However, heterogeneity of participants, low numbers, the variety of samples assayed, and other pre-analytical variables, have hampered the identification of disease-associated miRNomes.

In this study, our team has evaluated, for the first time, ME/CFS miRNomes in peripheral blood mononuclear cells (PBMCs) and extracellular vesicles (EVs) from severely ill patients recruited at the monographic UK ME biobank to assess, using standard operating procedures (SOPs), blood fractions with optimal diagnostic power for a rapid translation of a miR-based diagnostic method into the clinic.

Our results show that routine creatine kinase (CK) blood values, plasma EVs physical characteristics (including counts, size and zeta-potential), and a limited number of differentially expressed PBMC and EV miRNAs appear significantly associated with severe ME/CFS (p < 0.05). Gene enrichment analysis points to epigenetic and neuroimmune dysregulated pathways, in agreement with previous reports. Population validation by a cost-effective approach limited to these few potentially discriminating variables is granted.

Source: Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep. 2020 Feb 7;10(1):2064. doi: 10.1038/s41598-020-58506-5. https://www.nature.com/articles/s41598-020-58506-5 (Full text)

Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is one of the most important causes of disability among adolescents while limited knowledge exists on genetic determinants underlying disease pathophysiology.

METHODS: We analyzed deregulated immune-gene modules using Pathifier software on whole blood gene expression data (29 CFS patients, 18 controls). Deconvolution of immune cell subtypes based on gene expression profile was performed using CIBERSORT. Supervised consensus clustering on pathway deregulation score (PDS) was used to define CFS subgroups. Associations between PDS and immune, neuroendocrine/autonomic and clinical markers were examined. The impact of plasma norepinephrine level on clinical markers over time was assessed in a larger cohort (91 patients).

RESULTS: A group of 29 immune-gene sets was shown to differ patients from controls and detect subgroups within CFS. Group 1P (high PDS, low norepinephrine, low naïve CD4+ composition) had strong association with levels of serum C-reactive protein and Transforming Growth Factor-beta. Group 2P (low PDS, high norepinephrine, high naïve CD4+ composition) had strong associations with neuroendocrine/autonomic markers. The corresponding plasma norepinephrine level delineated 91 patients into two subgroups with significant differences in fatigue score.

CONCLUSION: We identified 29 immune-gene sets linked to plasma norepinephrine level that could delineate CFS subgroups. Plasma norepinephrine stratification revealed that lower levels of norepinephrine were associated with higher fatigue. Our data suggests potential involvement of neuro-immune dysregulation and genetic stratification in CFS.

Copyright © 2018. Published by Elsevier Inc.

Source: Nguyen CB, Kumar S, Zucknick M, Kristensen VN, Gjerstad J, Nilsen H, Wyller VB. Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome. Brain Behav Immun. 2018 Nov 9. pii: S0889-1591(18)30796-7. doi: 10.1016/j.bbi.2018.11.008. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/30419269

A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome

Abstract:

This paper proposes a neuro-immune model for Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). A wide range of immunological and neurological abnormalities have been reported in people suffering from ME/CFS. They include abnormalities in proinflammatory cytokines, raised production of nuclear factor-κB, mitochondrial dysfunctions, autoimmune responses, autonomic disturbances and brain pathology. Raised levels of oxidative and nitrosative stress (O&NS), together with reduced levels of antioxidants are indicative of an immuno-inflammatory pathology. A number of different pathogens have been reported either as triggering or maintaining factors.

Our model proposes that initial infection and immune activation caused by a number of possible pathogens leads to a state of chronic peripheral immune activation driven by activated O&NS pathways that lead to progressive damage of self epitopes even when the initial infection has been cleared. Subsequent activation of autoreactive T cells conspiring with O&NS pathways cause further damage and provoke chronic activation of immuno-inflammatory pathways. The subsequent upregulation of proinflammatory compounds may activate microglia via the vagus nerve.

Elevated proinflammatory cytokines together with raised O&NS conspire to produce mitochondrial damage. The subsequent ATP deficit together with inflammation and O&NS are responsible for the landmark symptoms of ME/CFS, including post-exertional malaise. Raised levels of O&NS subsequently cause progressive elevation of autoimmune activity facilitated by molecular mimicry, bystander activation or epitope spreading. These processes provoke central nervous system (CNS) activation in an attempt to restore immune homeostatsis.

This model proposes that the antagonistic activities of the CNS response to peripheral inflammation, O&NS and chronic immune activation are responsible for the remitting-relapsing nature of ME/CFS. Leads for future research are suggested based on this neuro-immune model.

 

Source: Morris G, Maes M. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab Brain Dis. 2013 Dec;28(4):523-40. doi: 10.1007/s11011-012-9324-8. Epub 2012 Jun 21. https://www.ncbi.nlm.nih.gov/pubmed/22718491

 

Chronic fatigue syndrome–a neuroimmunological model

Abstract:

The aetiological and pathophysiological basis of chronic fatigue syndrome (CFS) remains a controversial field of inquiry in the research community. While CFS and similar disease conditions such as fibromyalgia (FM) and post-infectious encephalopathy have been the focus of intense scrutiny for the past 20 years, results of research were often contradictory and a cohesive pathological model has remained elusive. However, recent developments in understanding the unique immunophysiology of the brain may provide important clues for the development of a truly comprehensive explanation of the pathology of CFS.

We argue that CFS pathogenesis lies in the influence of peripheral inflammatory events on the brain and the unique immunophysiology of the central nervous system. There is also evidence that CFS patients have a relative immunodeficiency that predisposes to poor early control of infection that leads to chronic inflammatory responses to infectious insults.

The neurological and endocrine changes have been described in CFS patients support the view that CFS has an inflammatory pathogenesis when considered as a whole. An inflammatory model of disease also provides an explanation for the marked female sex bias associated with CFS.

This review therefore posits the hypothesis that CFS as a disease of long-term inflammatory processes of the brain. We will also provide an investigative framework that could be used to justify the use of anti-TNF biological agents as a reliable and effective treatment approach to CFS, a syndrome that to date remains frustratingly difficult for both patients and health care professionals to manage.

Copyright © 2011 Elsevier Ltd. All rights reserved.

 

Source: Arnett SV, Alleva LM, Korossy-Horwood R, Clark IA. Chronic fatigue syndrome–a neuroimmunological model. Med Hypotheses. 2011 Jul;77(1):77-83. doi: 10.1016/j.mehy.2011.03.030. Epub 2011 Apr 6. https://www.ncbi.nlm.nih.gov/pubmed/21474251

 

Neuroimmune mechanisms in health and disease: 2. Disease

Abstract:

In the second part of their article on the emerging field of neuroimmunology, the authors present an overview of the role of neuroimmune mechanisms in defence against infectious diseases and in immune disorders. During acute febrile illness, immune-derived cytokines initiate an acute phase response, which is characterized by fever, inactivity, fatigue, anorexia and catabolism.

Profound neuroendocrine and metabolic changes take place: acute phase proteins are produced in the liver, bone marrow function and the metabolic activity of leukocytes are greatly increased, and specific immune reactivity is suppressed.

Defects in regulatory processes, which are fundamental to immune disorders and inflammatory diseases, may lie in the immune system, the neuro endocrine system or both. Defects in the hypothalamus-pituitary-adrenal axis have been observed in autoimmune and rheumatic diseases, chronic inflammatory disease, chronic fatigue syndrome and fibromyalgia.

Prolactin levels are often elevated in patients with systemic lupus erythematosus and other autoimmune diseases, whereas the bioactivity of prolactin is decreased in patients with rheumatoid arthritis. Levels of sex hormones and thyroid hormone are decreased during severe inflammatory disease. Defective neural regulation of inflammation likely plays a pathogenic role in allergy and asthma, in the symmetrical form of rheumatoid arthritis and in gastrointestinal inflammatory disease.

A better understanding of neuroimmunoregulation holds the promise of new approaches to the treatment of immune and inflammatory diseases with the use of hormones, neurotransmitters, neuropeptides and drugs that modulate these newly recognized immune regulators.

 

Source: Anisman H, Baines MG, Berczi I, Bernstein CN, Blennerhassett MG, Gorczynski RM, Greenberg AH, Kisil FT, Mathison RD, Nagy E, Nance DM, Perdue MH, Pomerantz DK, Sabbadini ER, Stanisz A, Warrington RJ. Neuroimmune mechanisms in health and disease: 2. Disease. CMAJ. 1996 Oct 15;155(8):1075-82. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1335357/ (Full article)