Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by severe and persistent fatigue. Along with clinical studies showing endothelial dysfunction (ED) in a subset of ME/CFS patients, we have recently reported altered ED-related microRNAs in plasma from affected individuals. Inadequate nitric oxide (NO), mainly produced by the endothelial isoform of nitric oxide synthase (eNOS) in endothelial cells (ECs), is a major cause of ED. In this study, we hypothesized that plasma from that cohort of ME/CFS patients induces eNOS-related ED in vitro.

To test this, we cultured human umbilical vein endothelial cells (HUVECs) in the presence of either plasma from ME/CFS patients (ME/CFS-plasma, n = 11) or healthy controls (HC-plasma, n = 12). Then, we measured the NO production in the absence or presence of tyrosine kinase and G protein-coupled receptors agonists (TKRs and GPCRs, respectively), well-known to activate eNOS in ECs.

Our data show that HUVECs incubated with ME/CFS-plasma produced less NO either in the absence or presence of eNOS activators compared to ones in presence of HC-plasma. Also, the NO production elicited by bradykinin, histamine, and acetylcholine (GPCRs agonists) was more affected than the one triggered by insulin (TKR agonist). Finally, inhibitory eNOS phosphorylation at Thr495 was higher in HUVECs treated with ME/CFS-plasma compared to the same treatment with HC-plasma. In conclusion, this study in vitro shows a decreased NO production in HUVECs exposed to plasma from ME/CFS patients, suggesting an unreported role of eNOS in the pathophysiology of this disease

Source: Bertinat R, Villalobos-Labra R, Hofmann L, Blauensteiner J, Sepúlveda N, Westermeier F. Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients. Vascul Pharmacol. 2022 Jan 21:106953. doi: 10.1016/j.vph.2022.106953. Epub ahead of print. PMID: 35074481. https://pubmed.ncbi.nlm.nih.gov/35074481/

Informatics Inference of Exercise-Induced Modulation of Brain Pathways Based on Cerebrospinal Fluid Micro-RNAs in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Introduction: The post-exertional malaise of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) was modeled by comparing micro-RNA (miRNA) in cerebrospinal fluid from subjects who had no exercise versus submaximal exercise.

Materials and Methods: Differentially expressed miRNAs were examined by informatics methods to predict potential targets and regulatory pathways affected by exercise.

Results: miR-608, miR-328, miR-200a-5p, miR-93-3p, and miR-92a-3p had higher levels in subjects who rested overnight (nonexercise n=45) compared to subjects who had exercised before their lumbar punctures (n=15). The combination was examined in DIANA MiRpath v3.0, TarBase, Cytoscape, and Ingenuity software® to select the intersection of target mRNAs. DIANA found 33 targets that may be elevated after exercise, including TGFBR1, IGFR1, and CDC42. Adhesion and adherens junctions were the most frequent pathways. Ingenuity selected seven targets that had complementary mechanistic pathways involving GNAQ, ADCY3, RAP1B, and PIK3R3. Potential target cells expressing high levels of these genes included choroid plexus, neurons, and microglia.

Conclusion: The reduction of this combination of miRNAs in cerebrospinal fluid after exercise suggested upregulation of phosphoinositol signaling pathways and altered adhesion during the post-exertional malaise of ME/CFS.

Clinical Trial Registration Nos.: NCT01291758 and NCT00810225.

Source: Narayan V, Shivapurkar N, Baraniuk JN. Informatics Inference of Exercise-Induced Modulation of Brain Pathways Based on Cerebrospinal Fluid Micro-RNAs in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Netw Syst Med. 2020 Nov 18;3(1):142-158. doi: 10.1089/nsm.2019.0009. PMID: 33274349; PMCID: PMC7703497.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703497/ (Full text)

Profile of circulating microRNAs in myalgic encephalomyelitis and their relation to symptom severity, and disease pathophysiology

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic disease, rooted in multi-system dysfunctions characterized by unexplained debilitating fatigue. Post-exertional malaise (PEM), defined as the exacerbation of the patient’s symptoms following minimal physical or mental stress, is a hallmark of ME/CFS. While multiple case definitions exist, there is currently no well-established biomarkers or laboratory tests to diagnose ME/CFS. Our study aimed to investigate circulating microRNA expression in severely ill ME/CFS patients before and after an innovative stress challenge that stimulates PEM. Our findings highlight the differential expression of eleven microRNAs associated with a physiological response to PEM. The present study uncovers specific microRNA expression signatures associated with ME/CFS in response to PEM induction and reports microRNA expression patterns associated to specific symptom severities. The identification of distinctive microRNA expression signatures for ME/CFS through a provocation challenge is essential for the elucidation of the ME/CFS pathophysiology, and lead to accurate diagnoses, prevention measures, and effective treatment options.

Source: Nepotchatykh, E., Elremaly, W., Caraus, I. et al. Profile of circulating microRNAs in myalgic encephalomyelitis and their relation to symptom severity, and disease pathophysiology. Sci Rep 10, 19620 (2020). https://doi.org/10.1038/s41598-020-76438-y  https://www.nature.com/articles/s41598-020-76438-y (Full text)

Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multisystemic disease of unknown etiology, affecting thousands of individuals worldwide. Its diagnosis still relies on ruling out medical problems leading to unexplained fatigue due to a complete lack of disease-specific biomarkers. Our group and others have explored the potential value of microRNA profiles (miRNomes) as diagnostic tools for this disease. However, heterogeneity of participants, low numbers, the variety of samples assayed, and other pre-analytical variables, have hampered the identification of disease-associated miRNomes.

In this study, our team has evaluated, for the first time, ME/CFS miRNomes in peripheral blood mononuclear cells (PBMCs) and extracellular vesicles (EVs) from severely ill patients recruited at the monographic UK ME biobank to assess, using standard operating procedures (SOPs), blood fractions with optimal diagnostic power for a rapid translation of a miR-based diagnostic method into the clinic.

Our results show that routine creatine kinase (CK) blood values, plasma EVs physical characteristics (including counts, size and zeta-potential), and a limited number of differentially expressed PBMC and EV miRNAs appear significantly associated with severe ME/CFS (p < 0.05). Gene enrichment analysis points to epigenetic and neuroimmune dysregulated pathways, in agreement with previous reports. Population validation by a cost-effective approach limited to these few potentially discriminating variables is granted.

Source: Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep. 2020 Feb 7;10(1):2064. doi: 10.1038/s41598-020-58506-5. https://www.nature.com/articles/s41598-020-58506-5 (Full text)

MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME

Abstract:

BACKGROUND: Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients.

METHODS: miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets.

RESULTS: Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology.

CONCLUSION: This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.

 

Source: Petty RD, McCarthy NE, Le Dieu R, Kerr JR. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME). PLoS One. 2016 Mar 11;11(3):e0150904. doi: 10.1371/journal.pone.0150904. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788442/ (Full article)

 

High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

BACKGROUND: MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME.

RESULTS: Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients.

CONCLUSION: Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers.

 

Source: Brenu EW, Ashton KJ, Batovska J, Staines DR, Marshall-Gradisnik SM. High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/myalgic encephalomyelitis. PLoS One. 2014 Sep 19;9(9):e102783. doi: 10.1371/journal.pone.0102783. ECollection 2014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169517/ (Full article)