BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome

Abstract:

Chronic diseases like ME/CFS and long COVID exhibit high heterogeneity with multifactorial etiology and progression, complicating diagnosis and treatment. To address this, we developed BioMapAI, an explainable Deep Learning framework using the richest longitudinal multi-‘omics dataset for ME/CFS to date.

This dataset includes gut metagenomics, plasma metabolome, immune profiling, blood labs, and clinical symptoms. By connecting multi-‘omics to asymptom matrix, BioMapAI identified both disease- and symptom-specific biomarkers, reconstructed symptoms, and achieved state-of-the-art precision in disease classification. We also created the first connectivity map of these ‘omics in both healthy and disease states and revealed how microbiome-immune-metabolome crosstalk shifted from healthy to ME/CFS.

Thus, we proposed several innovative mechanistic hypotheses for ME/CFS: Disrupted microbial functions – SCFA (butyrate), BCAA (amino acid), tryptophan, benzoate – lost connection with plasma lipids and bile acids, and activated inflammatory and mucosal immune cells (MAIT, γδT cells) with INFγ and GzA secretion. These abnormal dynamics are linked to key disease symptoms, including gastrointestinal issues, fatigue, and sleep problems.

Source: Xiong R, Fleming E, Caldwell R, Vernon SD, Kozhaya L, Gunter C, Bateman L, Unutmaz D, Oh J. BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome. bioRxiv [Preprint]. 2024 Jun 28:2024.06.24.600378. doi: 10.1101/2024.06.24.600378. PMID: 38979186; PMCID: PMC11230215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230215/ (Full text available as PDF file)

Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID

Abstract:

The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome.

Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes.

Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96.

Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.

Source: Wang K, Khoramjoo M, Srinivasan K, Gordon PMK, Mandal R, Jackson D, Sligl W, Grant MB, Penninger JM, Borchers CH, Wishart DS, Prasad V, Oudit GY. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep Med. 2023 Oct 18:101254. doi: 10.1016/j.xcrm.2023.101254. Epub ahead of print. PMID: 37890487. https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(23)00431-7 (Full text)