Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice

Abstract:

Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood.

A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria.

In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS.

Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS.

This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.

Source: Wei X, Xin J, Chen W, Wang J, Lv Y, Wei Y, Li Z, Ding Q, Shen Y, Xu X, Zhang X, Zhang W, Zu X. Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice. Biomed Pharmacother. 2023 May 9;163:114862. doi: 10.1016/j.biopha.2023.114862. Epub ahead of print. PMID: 37167729. https://www.sciencedirect.com/science/article/pii/S0753332223006522?via%3Dihub (Full study)

Gut Microbiota Dysbiosis Correlates With Long COVID-19 at One-Year After Discharge

Abstract:

Background: Long coronavirus disease 2019 (COVID-19) in recovered patients (RPs) is gradually recognized by more people. However, how long it will last and the underlining mechanism remains unclear.
Methods: We conducted a prospective follow-up study to evaluate the long-term symptoms and clinical indices of RPs at one-year after discharge from Union Hospital, Wuhan, China between December 2020 to May 2021. We also performed the 16S rRNA sequencing of stool samples from RPs and healthy controls (HCs) and analyzed the correlation between the gut microbiota and long COVID-19.
Results: In total, 187 RPs were enrolled, among them, 84 (44.9%) RPs reported long COVID-19 symptoms at one-year after discharge. The most common long-term symptoms were cardiopulmonary symptoms, including chest tightness after activity (39/187, 20.9%), palpitations on exercise (27/187, 14.4%), sputum (21/187, 11.2%), cough (15/187, 8.0%) and chest pain (13/187, 7.0%), followed by systemic symptoms including fatigue (34/187, 18.2%) and myalgia (20/187, 10.7%), and digestive symptoms including constipation (14/187, 7.5%), anorexia (13/187, 7.0%), and diarrhea (8/187, 4.3%). Sixty-six (35.9%) RPs presented either anxiety or depression (42/187 [22.8%] and 53/187 [28.8%] respectively), and the proportion of anxiety or depression in the long symptomatic group was significantly higher than that in the asymptomatic group (41/187 [50.6%] vs. 25/187 [24.3%]). Compared with the asymptomatic group, scores of all nine 36-Item Short Form General Health Survey domains were lower in the symptomatic group (all P < 0.05).
One hundred thirty RPs and 32 HCs (non-severe acute respiratory syndrome coronavirus 2 infected subjects) performed fecal sample sequencing. Compared with HCs, symptomatic RPs had obvious gut microbiota dysbiosis including significantly reduced bacterial diversities and lower relative abundance of short-chain fatty acids (SCFAs)-producing salutary symbionts such as Eubacterium_hallii_group,  SubdoligranulumRuminococcusDorea, Coprococcus, and Eubacterium_ventriosum_group. Meanwhile, the relative abundance of Eubacterium_hallii_group,  Subdoligranulum, and Ruminococcus showed decreasing tendencies between HCs, the asymptomatic group, and the symptomatic group.
Conclusion: This study demonstrated the presence of long COVID-19 which correlates with gut microbiota dysbiosis in RPs at one-year after discharge, indicating gut microbiota may play an important role in long COVID-19.
Source: Zhang D, Zhou Y, Ma Y, Chen P, Tang J, Yang B, Li H, Liang M, Xue Y, Liu Y, Zhang J, Wang X. Gut Microbiota Dysbiosis Correlates With Long COVID-19 at One-Year After Discharge. J Korean Med Sci. 2023;38(15):e120. https://doi.org/10.3346/jkms.2023.38.e120 (Full text)

Synbiotic Supplementation Improves Quality of Life and Inmunoneuroendocrine Response in Patients with Fibromyalgia: Influence of Codiagnosis with Chronic Fatigue Syndrome

Abstract:

Fibromyalgia (FM) and chronic fatigue syndrome (CFS) are two medical conditions in which pain, fatigue, immune/inflammatory dysregulation, as well as various mental health disorders predominate in the diagnosis, without evidence of a clear consensus on the treatment of FM and CFS.
The main aim of this research was to analyse the possible effects of a synbiotic (Synbiotic, Gasteel Plus® (Heel España S.A.U.), through the study of pro-inflammatory/anti-inflammatory cytokines (IL-8/IL-10) and neuroendocrine biomarkers (cortisol and DHEA), in order to evaluate the interaction between inflammatory and stress responses mediated by the cytokine-HPA (hypothalamic-pituitary-adrenal) axis, as well as mental and physical health using body composition analysis, accelerometry and previously validated questionnaires.
The participants were women diagnosed with FM with or without a diagnostic of CFS. Each participant was evaluated at baseline and after the intervention, which lasted one month. Synbiotic intervention decreased levels of perceived stress, anxiety and depression, as well as improved quality of life during daily activities. In addition, the synbiotic generated an activation of HPA axis (physiological cortisol release) that can compensate the increased inflammatory status (elevated IL-8) observed at baseline in FM patients. There were no detrimental changes in body composition or sleep parameters, as well as in the most of the activity/sedentarism-related parameters studied by accelerometry.
It is concluded that synbiotic nutritional supplements can improve the dysregulated immunoneuroendocrine interaction involving inflammatory and stress responses in women diagnosed with FM, particularly in those without a previous CFS diagnostic; as well as their perceived of levels stress, anxiety, depression and quality of life.
Source: Hinchado MD, Quero-Calero CD, Otero E, Gálvez I, Ortega E. Synbiotic Supplementation Improves Quality of Life and Inmunoneuroendocrine Response in Patients with Fibromyalgia: Influence of Codiagnosis with Chronic Fatigue Syndrome. Nutrients. 2023; 15(7):1591. https://doi.org/10.3390/nu15071591 https://www.mdpi.com/2072-6643/15/7/1591 (Full text)

LC, POTS, and ME/CFS: Lifting the Fog

Abstract:

These three syndromes – long covid (LC), postural orthostatic tachycardia syndrome (POTS), and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) – have many symptoms in common. The common denominator remains elusive.
The blood brain barrier (BBB) has been a barrier not only to microbes and toxins but also to understanding pathogenetic links. There are several areas within the brain that have no BBB. These are known as circumventricular organs (CVOs) and their location relative to CNS nuclei that direct autonomic and neuroendocrine functions is provocative in the quest for pathogenesis.
In addition the majority afflicted with LC and ME/CFS appear to be those with two MTHFR polymorphisms, present in over 50% of Americans. These polymorphisms elevate homocysteine. When homocysteine is combined with CVOs, the fog of POTS and its paradox are lifted. POTS may represent the intersection of LC and ME/CFS in those with the MTHFR gene (hypermethylation or 677TT).
The gut microbiomes of LC and ME/CFS, deficient in butyrates, GABA, and diversity, are then linked with MTHFR genotype 677TT. Reactivation of neurotropic EBV and VZV, due to loss of surveillance by CD4+/CD8+ T cells, is seen as secondary. The oxidative stress generated by homocysteine, loss of glutathione, low fiber diet, and persistent chronic inflammation exhaust available mitochondria and, assisted by BKN and estrogen, exacerbate all the elements of these post viral fatigue syndromes.
Source: Chambers, P. LC, POTS, and ME/CFS: Lifting the Fog. Preprints.org 2023, 2023030418. https://doi.org/10.20944/preprints202303.0418.v1 (Full text available as PDF file)

Assessment of microbiota in the gut and upper respiratory tract associated with SARS-CoV-2 infection

Abstract:

Background: The human microbiome plays an important role in modulating the host metabolism and immune system. Connections and interactions have been found between the microbiome of the gut and oral pharynx in the context of SARS-CoV-2 and other viral infections; hence, to broaden our understanding of host-viral responses in general and to deepen our knowledge of COVID-19, we performed a large-scale, systematic evaluation of the effect of SARS-CoV-2 infection on human microbiota in patients with varying disease severity.

Results: We processed 521 samples from 203 COVID-19 patients with varying disease severity and 94 samples from 31 healthy donors, consisting of 213 pharyngeal swabs, 250 sputa, and 152 fecal samples, and obtained meta-transcriptomes as well as SARS-CoV-2 sequences from each sample. Detailed assessment of these samples revealed altered microbial composition and function in the upper respiratory tract (URT) and gut of COVID-19 patients, and these changes are significantly associated with disease severity. Moreover, URT and gut microbiota show different patterns of alteration, where gut microbiome seems to be more variable and in direct correlation with viral load; and microbial community in the upper respiratory tract renders a high risk of antibiotic resistance. Longitudinally, the microbial composition remains relatively stable during the study period.

Conclusions: Our study has revealed different trends and the relative sensitivity of microbiome in different body sites to SARS-CoV-2 infection. Furthermore, while the use of antibiotics is often essential for the prevention and treatment of secondary infections, our results indicate a need to evaluate potential antibiotic resistance in the management of COVID-19 patients in the ongoing pandemic. Moreover, a longitudinal follow-up to monitor the restoration of the microbiome could enhance our understanding of the long-term effects of COVID-19.

Source: Li J, Jing Q, Li J, Hua M, Di L, Song C, Huang Y, Wang J, Chen C, Wu AR. Assessment of microbiota in the gut and upper respiratory tract associated with SARS-CoV-2 infection. Microbiome. 2023 Mar 3;11(1):38. doi: 10.1186/s40168-022-01447-0. PMID: 36869345; PMCID: PMC9982190. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982190/ (Full text)

The role of the microbiota-gut-brain axis in post-acute COVID syndrome

Abstract:

The COVID-19 pandemic has resulted in the infection of hundreds of millions of individuals over the past three years, coupled with millions of deaths. Along with these more acute impacts of infection, a large subset of patients developed symptoms that collectively comprise “post-acute sequelae of COVID-19” (PASC, also known as long COVID), which can persist for months and maybe even years. In this review, we outline current knowledge on the role of impaired microbiota-gut-brain (MGB) axis signaling in the development of PASC and the potential mechanisms involved, which may lead to better understanding of disease progression and treatment options in the future.

Source: Gareau MG, Barrett KE. The role of the microbiota-gut-brain axis in post-acute COVID syndrome. Am J Physiol Gastrointest Liver Physiol. 2023 Mar 7. doi: 10.1152/ajpgi.00293.2022. Epub ahead of print. PMID: 36880667. https://journals.physiology.org/doi/abs/10.1152/ajpgi.00293.2022 (Full text available as PDF file)

Exogenous Players in Mitochondria-Related CNS Disorders: Viral Pathogens and Unbalanced Microbiota in the Gut-Brain Axis

Abstract:

Billions of years of co-evolution has made mitochondria central to the eukaryotic cell and organism life playing the role of cellular power plants, as indeed they are involved in most, if not all, important regulatory pathways. Neurological disorders depending on impaired mitochondrial function or homeostasis can be caused by the misregulation of “endogenous players”, such as nuclear or cytoplasmic regulators, which have been treated elsewhere. In this review, we focus on how exogenous agents, i.e., viral pathogens, or unbalanced microbiota in the gut-brain axis can also endanger mitochondrial dynamics in the central nervous system (CNS).

Neurotropic viruses such as Herpes, Rabies, West-Nile, and Polioviruses seem to hijack neuronal transport networks, commandeering the proteins that mitochondria typically use to move along neurites. However, several neurological complications are also associated to infections by pandemic viruses, such as Influenza A virus and SARS-CoV-2 coronavirus, representing a relevant risk associated to seasonal flu, coronavirus disease-19 (COVID-19) and “Long-COVID”.

Emerging evidence is depicting the gut microbiota as a source of signals, transmitted via sensory neurons innervating the gut, able to influence brain structure and function, including cognitive functions. Therefore, the direct connection between intestinal microbiota and mitochondrial functions might concur with the onset, progression, and severity of CNS diseases.

Source: Righetto I, Gasparotto M, Casalino L, Vacca M, Filippini F. Exogenous Players in Mitochondria-Related CNS Disorders: Viral Pathogens and Unbalanced Microbiota in the Gut-Brain Axis. Biomolecules. 2023 Jan 13;13(1):169. doi: 10.3390/biom13010169. PMID: 36671555; PMCID: PMC9855674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855674/ (Full text)

Organ and cell-specific biomarkers of Long-COVID identified with targeted proteomics and machine learning

Abstract:

Background: Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as “Long-COVID”. A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treatment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel blood biomarkers of Long-COVID.

Methods: A case-control study comparing the expression of 2925 unique blood proteins in Long-COVID outpatients versus COVID-19 inpatients and healthy control subjects. Targeted proteomics was accomplished with proximity extension assays, and machine learning was used to identify the most important proteins for identifying Long-COVID patients. Organ system and cell type expression patterns were identified with Natural Language Processing (NLP) of the UniProt Knowledgebase.

Results: Machine learning analysis identified 119 relevant proteins for differentiating Long-COVID outpatients (Bonferonni corrected P < 0.01). Protein combinations were narrowed down to two optimal models, with nine and five proteins each, and with both having excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, F1 = 1.00). NLP expression analysis highlighted the diffuse organ system involvement in Long-COVID, as well as the involved cell types, including leukocytes and platelets, as key components associated with Long-COVID.

Conclusions: Proteomic analysis of plasma from Long-COVID patients identified 119 highly relevant proteins and two optimal models with nine and five proteins, respectively. The identified proteins reflected widespread organ and cell type expression. Optimal protein models, as well as individual proteins, hold the potential for accurate diagnosis of Long-COVID and targeted therapeutics.

Source: Patel MA, Knauer MJ, Nicholson M, Daley M, Van Nynatten LR, Cepinskas G, Fraser DD. Organ and cell-specific biomarkers of Long-COVID identified with targeted proteomics and machine learning. Mol Med. 2023 Feb 21;29(1):26. doi: 10.1186/s10020-023-00610-z. PMID: 36809921; PMCID: PMC9942653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942653/ (Full text)

Inflammation-associated gut microbiome in postacute sequelae of SARS-CoV-2 points towards new therapeutic targets

We read with interest the recent report by Liu et al1 describing faecal microbiome differences with postacute sequelae of SARS-CoV-2 (PASC), commonly referred to as ‘Long-COVID’. We have previously reported elevated levels of SARS-CoV-2-specific T cells with PASC compared with resolved COVID-19 (RC; no lingering symptoms at the time of sample collection) that correlated with increased levels of the inflammatory marker IL-6, suggesting that elevated inflammation in PASC may be related to immune response to residual virus.2 Although several studies have reported gut microbiome differences during acute COVID-19,3 PASC has received less attention. We, thus, sought to characterise gut microbiome differences in PASC versus RC using faecal samples from our study2 and to relate these differences to inflammation.

The faecal microbiome was evaluated using 16S rRNA gene sequencing. Plasma levels of inflammatory markers IL-6 and C reactive protein (CRP) were measured with ELISA (see online supplemental methods). Cohort information is in table 1. IL-6 and CRP were elevated with PASC (figure 1A). Gut microbiome composition did not significantly differ between the PASC and RC cohorts (PERMANOVA; p=0.087; figure 1B), but did correlate with IL-6 and CRP levels (Adonis; IL-6 p=0.03; CRP p=0.01). IL-6 and CRP also correlated with PC1 from a principal coordinates analysis (figure 1C,D), suggesting a relationship between microbiome composition and inflammation in PASC. Using SELBAL,4 which identifies ratios or ‘Balances’ of microbes that can differentiate between groups, we found that the faecal microbiomes of individuals with PASC had a lower ratio of an amplicon sequence variant (ASV) highly related to Faecalibacterium prausnitzii over ASVs related to species in the genus Bacteroides (B. doreiB. massiliensis and B. thetaiotaomicron) (figure 1E), which provided an area under the curve (AUC) of 0.863 for differentiating individuals with PASC from RC. Balance values also negatively correlated with IL-6 (r=−0.44, p=0.01). These microbiome differences are consistent with Liu et al,1 who also reported higher levels of Bacteroides (B. vulgatus specifically) and lower F. prausnitzii with PASC. Liu et al also reported higher Ruminococcus gnavus with PASC, and lower Collinsella aerofaciens, and Blautia obeum. Interestingly, an ASV highly related to R. gnavus (100% identity over V4 read) correlated positively with IL-6 and ASVs related to F. prausnitzii (98.7% ID), C. aerofaciens (100% ID) and B. obeum (100% ID) all negatively correlated with IL-6 and/or CRP levels in our study (online supplemental table 1). Thus, our results are consistent with those of Liu et al and extend their findings by showing associations between the microbiome and markers of systemic inflammation.

Read the rest of this letter HERE.

Source: Carneiro VL, Littlefield KM, Watson R, Palmer BE, Lozupone C. Inflammation-associated gut microbiome in postacute sequelae of SARS-CoV-2 points towards new therapeutic targets. Gut. 2023 Jan 30:gutjnl-2022-328757. doi: 10.1136/gutjnl-2022-328757. Epub ahead of print. PMID: 36717218. https://gut.bmj.com/content/early/2023/01/29/gutjnl-2022-328757 (Full text)

Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID

Abstract:

A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic.
Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID.
This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein–Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity.
Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Source: Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses. 2023; 15(2):400. https://doi.org/10.3390/v15020400 https://www.mdpi.com/1999-4915/15/2/400 (Full text)