Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC)

Abstract:

COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment.

This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC.

The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.

Source: Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB; RECOVER Mechanistic Pathway Task Force. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). Elife. 2023 Mar 22;12:e86002. doi: 10.7554/eLife.86002. PMID: 36947108; PMCID: PMC10032659. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032659/ (Full text)

Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID

Abstract:

Background: COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID).

Methods: We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalization and up to 9 months of convalescence following COVID-19, respiratory syncytial virus (RSV) or influenza A (flu). Progressive fibrosing interstitial lung disease (PFILD) patients were included a positive control for severe, ongoing lung injury.

Results: Monocyte alterations in acute COVID-19 patients included aberrant expression of leucocyte migration molecules, continuing into convalescence (n=142) and corresponding to specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of chemokine receptor CXCR6 (p<0.0001) and adhesion molecule PSGL-1 (p<0.01), alongside preferential migration of monocytes towards CXCR6 ligand CXCL16 (p<0.05) which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in PFILD patients (p<0.001) confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited sustained reduction of the prostaglandin-generating enzyme COX-2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in RSV or flu convalescence.

Conclusions: Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.

Source: Scott NA, Pearmain L, Knight SB, Brand O, Morgan DJ, Jagger C, Harbach S, Khan S, Shuwa HA, Franklin M, Kästele V, Williams T, Prise I, McClure FA, Hackney P, Smith L, Menon M, Konkel JE, Lawless C, Wilson J, Mathioudakis AG, Stanel SC, Ustianowski A, Lindergard G, Brij S, Diar Bakerly N, Dark P, Brightling C, Rivera-Ortega P, Lord GM, Horsley A; CIRCO; Piper Hanley K, Felton T, Simpson A, Grainger JR, Hussell T, Mann ER. Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. Eur Respir J. 2023 Mar 15:2202226. doi: 10.1183/13993003.02226-2022. Epub ahead of print. PMID: 36922030. https://erj.ersjournals.com/content/early/2023/02/23/13993003.02226-2022 (Full article available as PDF file)

The role of immune activation and antigen persistence in acute and long COVID

Abstract:

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID.

Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation.

Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen.

This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.

Source: Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med. 2023 Mar 6:10815589231158041. doi: 10.1177/10815589231158041. Epub ahead of print. PMID: 36879504; PMCID: PMC9996119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996119/ (Full text)

The role of the microbiota-gut-brain axis in post-acute COVID syndrome

Abstract:

The COVID-19 pandemic has resulted in the infection of hundreds of millions of individuals over the past three years, coupled with millions of deaths. Along with these more acute impacts of infection, a large subset of patients developed symptoms that collectively comprise “post-acute sequelae of COVID-19” (PASC, also known as long COVID), which can persist for months and maybe even years. In this review, we outline current knowledge on the role of impaired microbiota-gut-brain (MGB) axis signaling in the development of PASC and the potential mechanisms involved, which may lead to better understanding of disease progression and treatment options in the future.

Source: Gareau MG, Barrett KE. The role of the microbiota-gut-brain axis in post-acute COVID syndrome. Am J Physiol Gastrointest Liver Physiol. 2023 Mar 7. doi: 10.1152/ajpgi.00293.2022. Epub ahead of print. PMID: 36880667. https://journals.physiology.org/doi/abs/10.1152/ajpgi.00293.2022 (Full text available as PDF file)

Cystatin-c May Indicate Subclinical Renal Involvement, While Orosomucoid Is Associated with Fatigue in Patients with Long-COVID Syndrome

Abstract:

Long-COVID syndrome is associated with high healthcare costs, but its pathophysiology is not yet fully understood. Inflammation, renal impairment or disturbance of the NO system emerge as potential pathogenetic factors. We aimed to investigate the relationship between symptoms of long-COVID syndrome and serum levels of cystatin-c (CYSC), orosomucoid (ORM), l-arginine, symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA). A total of 114 patients suffering from long-COVID syndrome were included in this observational cohort study.

We found that serum CYSC was independently associated with the anti-spike immunoglobulin (S-Ig) serum level (OR: 5.377, 95% CI: 1.822-12.361; p = 0.02), while serum ORM (OR: 9.670 (95% CI: 1.34-9.93; p = 0.025) independently predicted fatigue in patients with long-COVID syndrome, both measured at baseline visit. Additionally, the serum CYSC concentrations measured at the baseline visit showed a positive correlation with the serum SDMA levels. The severity of abdominal and muscle pain indicated by patients at the baseline visit showed a negative correlation with the serum level of L-arginine.

In summary, serum CYSC may indicate subclinical renal impairment, while serum ORM is associated with fatigue in long-COVID syndrome. The potential role of l-arginine in alleviating pain requires further studies.

Source: Zavori L, Molnar T, Varnai R, Kanizsai A, Nagy L, Vadkerti B, Szirmay B, Schwarcz A, Csecsei P. Cystatin-c May Indicate Subclinical Renal Involvement, While Orosomucoid Is Associated with Fatigue in Patients with Long-COVID Syndrome. J Pers Med. 2023 Feb 19;13(2):371. doi: 10.3390/jpm13020371. PMID: 36836605; PMCID: PMC9958557. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958557/ (Full text)

Identification of the pathogenic relationship between Long COVID and Alzheimer’s disease by bioinformatics methods

Abstract:

Background: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented global health crisis. Although many Corona Virus Disease 2019 (COVID-19) patients have recovered, the long-term consequences of SARS-CoV-2 infection are unclear. Several independent epidemiological surveys and clinical studies have found that SARS-CoV-2 infection and Long COVID are closely related to Alzheimer’s disease (AD). This could lead to long-term medical challenges and social burdens following this health crisis. However, the mechanism between Long COVID and AD is unknown.

Methods: Genes associated with Long COVID were collected from the database. Two sets of AD-related clinical sample datasets were collected in the Gene Expression Omnibus (GEO) database by limiting screening conditions. After identifying the differentially expressed genes (DEGs) of AD, the significant overlapping genes of AD and Long COVID were obtained by taking the intersection. Then, four kinds of analyses were performed, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis, protein-protein interaction (PPI) analysis, identification of hub genes, hub gene verification and transcription factors (TFs) prediction.

Results: A total of 197 common genes were selected for subsequent analysis. GO and KEGG enrichment analysis showed that these genes were mainly enriched in multiple neurodegenerative disease related pathways. In addition, 20 important hub genes were identified using cytoHubba. At the same time, these hub genes were verified in another data set, where 19 hub gene expressions were significantly different in the two diseases and 6 hub genes were significantly different in AD patients of different genders. Finally, we collected 9 TFs that may regulate the expression of these hub genes in the Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRUSST) database and verified them in the current data set.

Conclusion: This work reveals the common pathways and hub genes of AD and Long COVID, providing new ideas for
the pathogenic relationship between these two diseases and further mechanism research.

Source:

Structural brain changes in patients with post-COVID fatigue: a prospective observational study

Summary:

Background: Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity.

Methods: We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18–69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5–9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue.

Findings: Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness.

Interpretation: Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications.

Source: Josephine Heine, et al. Structural brain changes in patients with post-COVID fatigue: a prospective observational study. The Lancet, VOLUME 58, 101874, APRIL 2023.  Published: February 27, 2023 DOI: https://doi.org/10.1016/j.eclinm.2023.101874 (Full text)

Left atrial longitudinal strain analysis in long Covid-19 syndrome

Abstract:

It is known that during the active course of Coronavirus disease 2019 (COVID-19), myocardial injury has an established pathological base, while its myocardial injury post-recovery is still obscured.

The aim of this study was to evaluate the longitudinal left atrial strain (LAS) using speckle tracking echocardiography (STE) in COVID-19-recovered patients who are previously healthy without confounder comorbidities to detect the potential cardiac dysfunction. 200 patients were prospectively included and examined 4?12 weeks after recovery from COVID-19 infection. 137 participants with comorbidities or previous history of cardiopulmonary disease were excluded from the analysis. A total of 63 patients who fulfilled our inclusion criteria were recruited into two groups according to the presence or absence of persistent dyspnoea and exercise intolerance. Clinical, laboratory & comprehensive echocardiographic examinations were done for all.

We observed that 31.7% of the previously healthy individuals developed dyspnoea & exercise intolerance post-COVID-19 infection. There were significantly impaired LAS parameters in the symptomatic group (LA reservoir, contraction & conduit strain, 22.7%, -6.6% & -16.1% versus 40%, -12%, and ? 27% in the asymptomatic group with P < 0.000).

Only LA reservoir strain and LA stiffness can independently predict the development of dyspnoea & exercise intolerance post-COVID-19 at cut-off values of 30% & 24.5% respectively with a sensitivity of 90% and a specificity of 91%, P < 0.001. These impaired LAS parameters could explain the developed symptoms post-COVID-19 recovery, even before disturbed conventional diastolic echocardiographic parameters. LAS parameters are significantly associated with the developed exertional dyspnoea & exercise intolerance post-COVID-19. LA reservoir strain & LA stiffness could provide a simple, easily available tool that points to early LV diastolic dysfunction and may direct the therapy in this subset of the population.

Source: ZeinElabdeen SG, Sherif A, Kandil NT, Altabib AMO, Abdelrashid MA. Left atrial longitudinal strain analysis in long Covid-19 syndrome. Int J Cardiovasc Imaging. 2023 Feb 14:1–6. doi: 10.1007/s10554-023-02801-5. Epub ahead of print. PMID: 36786877; PMCID: PMC9927057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927057/ (Full text)

The Role of Interferons in Long Covid Infection

Abstract:

Although the new generation of vaccines and anti-COVID-19 treatment regimens facilitated the management of acute COVID-19 infections, concerns about post-COVID-19 syndrome or Long Covid are rising. This issue can increase the incidence and morbidity of diseases such as diabetes, and cardiovascular, and lung infections, especially among patients suffering from neurodegenerative disease, cardiac arrhythmias, and ischemia.

There are numerous risk factors that cause COVID-19 patients to experience post-COVID-19 syndrome. Three potential causes attributed to this disorder include immune dysregulation, viral persistence, and autoimmunity. Interferons (IFNs) are crucial in all aspects of post-COVID-19 syndrome etiology.

In this review, we discuss the critical and double-edged role of IFNs in post-COVID-19 syndrome and how innovative biomedical approaches that target IFNs can reduce the occurrence of Long Covid infection.

Source: Karbalaeimahdi M, Farajnia S, Bargahi N, Ghadiri-Moghaddam F, Rasouli Jazi HR, Bakhtiari N, Ghasemali S, Zarghami N. The Role of Interferons in Long Covid Infection. J Interferon Cytokine Res. 2023 Feb;43(2):65-76. doi: 10.1089/jir.2022.0193. PMID: 36795973. https://pubmed.ncbi.nlm.nih.gov/36795973/

Post-COVID syndrome is associated with capillary alterations, macrophage infiltration and distinct transcriptomic signatures in skeletal muscles

Abstract:

The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also caused innumerable cases of post-infectious syndromes, colloquially referred to as “long COVID”. Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms. We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2.

Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues, but transcriptomic analysis revealed distinct gene signatures compared to the two control cohorts, indicating immune dysregulations and altered metabolic pathways.

We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain.

Source: Tom AschmanEmanuel WylerOliver BaumAndreas HentschelFranziska LeglerCorinna PreusseLil Meyer-ArndtIvana BüttnerovaAlexandra FörsterDerya CengizLuiz Gustavo Teixeira AlvesJulia SchneiderClaudia KedorRebecca RustJudith Bellmann-StroblSanchin AminaaPeter VajkoczyHans-Hilmar GoebelMarkus LandthalerVictor CormanAndreas RoosFrank L. HeppnerHelena RadbruchFriedemann PaulCarmen ScheibenbogenWerner StenzelNora F. Dengler. Post-COVID syndrome is associated with capillary alterations, macrophage infiltration and distinct transcriptomic signatures in skeletal muscles.