T cell responses to SARS-CoV-2 in people with and without neurologic symptoms of long COVID

Abstract:

Many people experiencing long COVID syndrome, or post-acute sequelae of SARS-CoV-2 infection (PASC), suffer from debilitating neurologic symptoms (Neuro-PASC). However, whether virus-specific adaptive immunity is affected in Neuro-PASC patients remains poorly understood. We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated humoral and cellular responses toward SARS-CoV-2 Nucleocapsid protein at an average of 6 months post-infection compared to healthy COVID convalescents. Neuro-PASC patients also had enhanced virus-specific production of IL-6 from and diminished activation of CD8+ T cells.

Furthermore, the severity of cognitive deficits or quality of life disturbances in Neuro-PASC patients were associated with a reduced diversity of effector molecule expression in T cells but elevated IFN-γ production to the C-terminal domain of Nucleocapsid protein. Proteomics analysis showed enhanced plasma immunoregulatory proteins and reduced pro-inflammatory and antiviral response proteins in Neuro-PASC patients compared with healthy COVID convalescents, which were also correlated with worse neurocognitive dysfunction. These data provide new insight into the pathogenesis of long COVID syndrome and a framework for the rational design of predictive biomarkers and therapeutic interventions.

One Sentence Summary Adaptive immunity is altered in patients with neurologic manifestations of long COVID.

Source: Lavanya Visvabharathy, Barbara A. Hanson, Zachary S. Orban, Patrick H. Lim, Nicole M. Palacio, Millenia Jimenez, Jeffrey R. Clark, Edith L. Graham, Eric M. Liotta, George Tachas, Pablo Penaloza-MacMaster, Igor J. Koralnik. T cell responses to SARS-CoV-2 in people with and without neurologic symptoms of long COVID. medRxiv 2021.08.08.21261763; doi: https://doi.org/10.1101/2021.08.08.21261763 https://www.medrxiv.org/content/10.1101/2021.08.08.21261763v4.full-text (Full text)

Long COVID: The latest manifestations, mechanisms, and potential therapeutic interventions

Abstract:

COVID-19 caused by SARS-CoV-2 infection affects humans not only during the acute phase of the infection, but also several weeks to 2 years after the recovery. SARS-CoV-2 infects a variety of cells in the human body, including lung cells, intestinal cells, vascular endothelial cells, olfactory epithelial cells, etc. The damages caused by the infections of these cells and enduring immune response are the basis of long COVID. Notably, the changes in gene expression caused by viral infection can also indirectly contribute to long COVID.

We summarized the occurrences of both common and uncommon long COVID, including damages to lung and respiratory system, olfactory and taste deficiency, damages to myocardial, renal, muscle, and enduring inflammation. Moreover, we provided potential treatments for long COVID symptoms manifested in different organs and systems, which were based on the pathogenesis and the associations between symptoms in different organs.

Importantly, we compared the differences in symptoms and frequency of long COVID caused by breakthrough infection after vaccination and infection with different variants of concern, in order to provide a comprehensive understanding of the characteristics of long COVID and propose improvement for tackling COVID-19.

Source: He ST, Wu K, Cheng Z, He M, Hu R, Fan N, Shen L, Li Q, Fan H, Tong Y. Long COVID: The latest manifestations, mechanisms, and potential therapeutic interventions. MedComm (2020). 2022 Dec 8;3(4):e196. doi: 10.1002/mco2.196. PMID: 36514781; PMCID: PMC9732402. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732402/ (Full text)

Brain fog as a Long-term Sequela of COVID-19

Abstract:

Increasing data indicate that people infected with COVID-19 are at high risk for developing long-term neurological complications, such as “brain fog” or cognitive impairment. However, little is known about the long-term outcomes of COVID-19 survivors. This also applies to the prevalence, risk factors, and pathobiological findings associated with these consequences. Although cognitive complications are anticipated in patients who require a long-lasting hospital stay or intubation, milder cases of COVID-19 with no record of hospitalization have also been shown to experience assessable cognitive challenges. Cognitive impairment can have a devastating impact on daily functioning. Understanding the long-term effect of COVID-19 on cognitive function is vital for applying specific schemes to those who wish to return to their jobs productively.

Source: Nouraeinejad A. Brain fog as a Long-term Sequela of COVID-19. SN Compr Clin Med. 2023;5(1):9. doi: 10.1007/s42399-022-01352-5. Epub 2022 Nov 24. PMID: 36466122; PMCID: PMC9685075. https://link.springer.com/article/10.1007/s42399-022-01352-5 (Full text)

Psychological consequences of long COVID: comparing trajectories of depressive and anxiety symptoms before and after contracting SARS-CoV-2 between matched long- and short-COVID groups

Abstract:

Background: There is a growing global awareness of the psychological consequences of long COVID, supported by emerging empirical evidence. However, the emergence and long-term trajectories of psychological symptoms following the infection are still unclear.

Aims: To examine when psychological symptoms first emerge following infection with SARS-CoV-2 and the long-term trajectories of psychological symptoms comparing long- and short-COVID groups.

Method: We analysed longitudinal data from the UCL COVID-19 Social Study (March 2020 to November 2021). We included data from adults living in England who reported contracting SARS-CoV-2 by November 2021 (n = 3115). Of these, 15.9% reported having had long COVID (n = 495). They were matched to participants who had short COVID using propensity score matching on a variety of demographic, socioeconomic and health covariates (n = 962 individuals with 13 325 observations) and data were further analysed using growth curve modelling.

Results: Depressive and anxiety symptoms increased immediately following the onset of infection in both long- and short-COVID groups. But the long-COVID group had substantially greater initial increases in depressive symptoms and heightened levels over 22 months follow-up. Initial increases in anxiety were not significantly different between groups, but only the short-COVID group experienced an improvement in anxiety over follow-up, leading to widening differences between groups.

Conclusions: The findings support work on the psychobiological pathways involved in the development of psychological symptoms relating to long COVID. The results highlight the need for monitoring of mental health and provision of adequate support to be interwoven with diagnosis and treatment of the physical consequences of long COVID.

Source: Fancourt D, Steptoe A, Bu F. Psychological consequences of long COVID: comparing trajectories of depressive and anxiety symptoms before and after contracting SARS-CoV-2 between matched long- and short-COVID groups. Br J Psychiatry. 2022 Dec 2:1-8. doi: 10.1192/bjp.2022.155. Epub ahead of print. PMID: 36458509. https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/psychological-consequences-of-long-covid-comparing-trajectories-of-depressive-and-anxiety-symptoms-before-and-after-contracting-sarscov2-between-matched-long-and-shortcovid-groups/923140B3F95F1158C0CDC188002531AE (Full text)

Impact of pre-existing chronic viral infection and reactivation on the development of long COVID

Abstract:

Background: The presence and reactivation of chronic viral infections such as Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) have been proposed as potential contributors to Long COVID (LC), but studies in well-characterized post-acute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited.

Methods: In a cohort of 280 adults with prior SARS-CoV-2 infection, we assessed the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status), and performed serological testing for EBV and CMV using a commercial laboratory. We used covariate-adjusted binary logistic regression models to identify independent associations between variables and LC symptoms.

Results: We observed that LC symptoms such as fatigue and neurocognitive dysfunction at a median of 4months following initial diagnosis were independently associated with serological evidence suggesting recent EBV reactivation (early antigen-D [EA-D] IgG positivity) or high nuclear antigen (EBNA) IgG levels, but not with ongoing EBV viremia. Serological evidence suggesting recent EBV reactivation (EA-D IgG) was most strongly associated with fatigue (OR 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR 0.52).

Conclusion: Overall, these findings suggest differential effects of chronic viral co-infections on the likelihood of developing LC and predicted distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted.

Trial registration: Long-term Impact of Infection with Novel Coronavirus (LIINC); NCT04362150FUNDING. This work was supported by the National Institute of Allergy and Infectious Diseases NIH/NIAID 3R01AI141003-03S1 to TJ Henrich, R01AI158013 to M Gandhi and M Spinelli, K24AI145806 to P Hunt, and by the Zuckerberg San Francisco Hospital Department of Medicine and Division of HIV, Infectious Diseases, and Global Medicine. MJP is supported on K23 A137522 and received support from the UCSFBay Area Center for AIDS Research (P30-AI027763).

Source: Peluso MJ, Deveau TM, Munter SE, Ryder DM, Buck AM, Beck-Engeser G, Chan F, Lu S, Goldberg SA, Hoh R, Tai V, Torres L, Iyer NS, Deswal M, Ngo LH, Buitrago M, Rodriguez AE, Chen JY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deitchman AN, Hellmuth J, Spinelli MA, Durstenfeld MS, Hsue PY, Kelly JD, Martin JN, Deeks SG, Hunt PW, Henrich TJ. Impact of pre-existing chronic viral infection and reactivation on the development of long COVID. J Clin Invest. 2022 Dec 1:e163669. doi: 10.1172/JCI163669. Epub ahead of print. PMID: 36454631. https://www.jci.org/articles/view/163669 (Full text)

Molecular and cellular similarities in the brain of SARS-CoV-2 and Alzheimer’s disease individuals

Abstract:

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer’s disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. ‘

Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.

Source: Griggs E, Trageser K, Naughton S, Yang EJ, Mathew B, Van Hyfte G, Hellmers L, Jette N, Estill M, Shen L, Fischer T, Pasinetti GM. Molecular and cellular similarities in the brain of SARS-CoV-2 and Alzheimer’s disease individuals. bioRxiv [Preprint]. 2022 Nov 23:2022.11.23.517706. doi: 10.1101/2022.11.23.517706. PMID: 36451886; PMCID: PMC9709800. https://www.biorxiv.org/content/10.1101/2022.11.23.517706v1.full (Full text)

Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in Post-Acute COVID-19 syndrome-A narrative review

Abstract:

Persistence of symptoms beyond the initial 3 to 4 weeks after infection is defined as post-acute COVID-19 syndrome (PACS). A wide range of neuropsychiatric symptoms like anxiety, depression, post-traumatic stress disorder, sleep disorders and cognitive disturbances have been observed in PACS. The review was conducted based on PRISMA-S guidelines for literature search strategy for systematic reviews.

A cytokine storm in COVID-19 may cause a breach in the blood brain barrier leading to cytokine and SARS-CoV-2 entry into the brain. This triggers an immune response in the brain by activating microglia, astrocytes, and other immune cells leading to neuroinflammation. Various inflammatory biomarkers like inflammatory cytokines, chemokines, acute phase proteins and adhesion molecules have been implicated in psychiatric disorders and play a major role in the precipitation of neuropsychiatric symptoms. Impaired adult neurogenesis has been linked with a variety of disorders like depression, anxiety, cognitive decline, and dementia.

Persistence of neuroinflammation was observed in COVID-19 survivors 3 months after recovery. Chronic neuroinflammation alters adult neurogenesis with pro-inflammatory cytokines supressing anti-inflammatory cytokines and chemokines favouring adult neurogenesis. Based on the prevalence of neuropsychiatric symptoms/disorders in PACS, there is more possibility for a potential impairment in adult neurogenesis in COVID-19 survivors. This narrative review aims to discuss the various neuroinflammatory processes during PACS and its effect on adult neurogenesis.

Source: Saikarthik J, Saraswathi I, Alarifi A, Al-Atram AA, Mickeymaray S, Paramasivam A, Shaikh S, Jeraud M, Alothaim AS. Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in Post-Acute COVID-19 syndrome-A narrative review. PeerJ. 2022 Nov 4;10:e14227. doi: 10.7717/peerj.14227. PMID: 36353605; PMCID: PMC9639419. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639419/ (Full text)

Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults

Abstract:

Background: Autonomic dysfunction is a known complication of post-acute sequelae of SARS-CoV-2 (PASC)/long COVID, however prevalence and severity are unknown.

Objective: To assess the frequency, severity, and risk factors of autonomic dysfunction in PASC, and to determine whether severity of acute SARS-CoV-2 infection is associated with severity of autonomic dysfunction.

Design: Cross-sectional online survey of adults with PASC recruited through long COVID support groups between October 2020 and August 2021.

Participants: 2,413 adults ages 18-64 years with PASC including patients who had a confirmed positive test for COVID-19 (test-confirmed) and participants who were diagnosed with COVID-19 based on clinical symptoms alone.

Main measures: The main outcome measure was the Composite Autonomic Symptom 31 (COMPASS-31) total score, used to assess global autonomic dysfunction. Test-confirmed hospitalized vs. test-confirmed non-hospitalized participants were compared to determine if the severity of acute SARS-CoV-2 infection was associated with the severity autonomic dysfunction.

Key results: Sixty-six percent of PASC patients had a COMPASS-31 score >20, suggestive of moderate to severe autonomic dysfunction. COMPASS-31 scores did not differ between test-confirmed hospitalized and test-confirmed non-hospitalized participants [28.95 (15.62, 46.60) vs. 26.4 (13.75, 42.10); p = 0.06].

Conclusions: Evidence of moderate to severe autonomic dysfunction was seen in 66% of PASC patients in our study, independent of hospitalization status, suggesting that autonomic dysfunction is highly prevalent in the PASC population and independent of the severity of acute COVID-19 illness.

Source: Larsen NW, Stiles LE, Shaik R, Schneider L, Muppidi S, Tsui CT, Geng LN, Bonilla H, Miglis MG. Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Front Neurol. 2022 Oct 19;13:1012668. doi: 10.3389/fneur.2022.1012668. PMID: 36353127; PMCID: PMC9639503. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639503/ (Full text)

Central hypersomnia and chronic insomnia: expanding the spectrum of sleep disorders in long COVID syndrome – a prospective cohort study

Abstract:

Introduction: Long-onset COVID syndrome has been described in patients with COVID-19 infection with persistence of symptoms or development of sequelae beyond 4 weeks after the onset of acute symptoms, a medium- and long-term consequence of COVID-19. This syndrome can affect up to 32% of affected individuals, with symptoms of fatigue, dyspnea, chest pain, cognitive disorders, insomnia, and psychiatric disorders. The present study aimed to characterize and evaluate the prevalence of sleep symptoms in patients with long COVID syndrome.

Methodology: A total of 207 patients with post-COVID symptoms were evaluated through clinical evaluation with a neurologist and specific exams in the subgroup complaining of excessive sleepiness.

Results: Among 189 patients included in the long COVID sample, 48 (25.3%) had sleep-related symptoms. Insomnia was reported by 42 patients (22.2%), and excessive sleepiness (ES) was reported by 6 patients (3.17%). Four patients with ES were evaluated with polysomnography and test, multiple sleep latencies test, and actigraphic data. Two patients had a diagnosis of central hypersomnia, and one had narcolepsy. A history of steroid use was related to sleep complaints (insomnia and excessive sleepiness), whereas depression was related to excessive sleepiness. We observed a high prevalence of cognitive complaints in these patients.

Conclusion: Complaints related to sleep, such as insomnia and excessive sleepiness, seem to be part of the clinical post-acute syndrome (long COVID syndrome), composing part of its clinical spectrum, relating to some clinical data.

Source: Moura AEF, Oliveira DN, Torres DM, Tavares-Júnior JWL, Nóbrega PR, Braga-Neto P, Sobreira-Neto MA. Central hypersomnia and chronic insomnia: expanding the spectrum of sleep disorders in long COVID syndrome – a prospective cohort study. BMC Neurol. 2022 Nov 9;22(1):417. doi: 10.1186/s12883-022-02940-7. PMID: 36352367; PMCID: PMC9643986. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643986/ (Full text)

Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study

Abstract:

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes.

The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.

Source: Etter MM, Martins TA, Kulsvehagen L, Pössnecker E, Duchemin W, Hogan S, Sanabria-Diaz G, Müller J, Chiappini A, Rychen J, Eberhard N, Guzman R, Mariani L, Melie-Garcia L, Keller E, Jelcic I, Pargger H, Siegemund M, Kuhle J, Oechtering J, Eich C, Tzankov A, Matter MS, Uzun S, Yaldizli Ö, Lieb JM, Psychogios MN, Leuzinger K, Hirsch HH, Granziera C, Pröbstel AK, Hutter G. Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study. Nat Commun. 2022 Nov 9;13(1):6777. doi: 10.1038/s41467-022-34068-0. PMID: 36351919; PMCID: PMC9645766.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645766/ (Full text)