Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves

Abstract:

The use of CD169 as a marker of viral infection has been widely discussed in the context of COVID-19, and in particular, its crucial role in the early detection of SARS-CoV-2 infection and its association with the severity and clinical outcome of COVID-19 were demonstrated. COVID-19 patients show relevant systemic alteration and immunological dysfunction that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).

It is critical to implement the characterization of the disease, focusing also on the possible impact of the different COVID-19 waves and the consequent effects found after infection. On this basis, we evaluated by flow cytometry the expression of CD169 and HLA-DR on monocytes from COVID-19 patients and PASC individuals to better elucidate their involvement in immunological dysfunction, also evaluating the possible impact of different pandemic waves.

The results confirm CD169 RMFI is a good marker of viral infection. Moreover, COVID-19 patients and PASC individuals showed high percentage of CD169+ monocytes, but low percentage of HLA-DR+ monocytes and the alteration of systemic inflammatory indices. We have also observed alterations of CD169 and HLA-DR expression and indices of inflammation upon different COVID-19 waves.

The persistence of specific myeloid subpopulations suggests a role of CD169+ monocytes and HLA-DR in COVID-19 disease and chronic post-infection inflammation, opening new opportunities to evaluate the impact of specific pandemic waves on the immune response impairment and systemic alterations with the perspective to provide new tools to monitoring new variants and diseases associated to emerging respiratory viruses.

Source: Fanelli M, Petrone V, Maracchioni C, Chirico R, Cipriani C, Coppola L, Malagnino V, Teti E, Sorace C, Zordan M, Vitale P, Iannetta M, Balestrieri E, Rasi G, Grelli S, Malergue F, Sarmati L, Minutolo A, Matteucci C. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. Curr Res Microb Sci. 2023 Dec 12;6:100215. doi: 10.1016/j.crmicr.2023.100215. PMID: 38187999; PMCID: PMC10767315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767315/ (Full text)

Single-Cell RNA Sequencing Reveals Alterations in Patient Immune Cells with Pulmonary Long COVID-19 Complications

Abstract:

Since the emergence of the COVID-19 pandemic, the effects of SARS-CoV-2 have been extensively researched. While much is already known about the acute phase of the infection, increasing attention has turned to the prolonged symptoms experienced by a subset of individuals, commonly referred to as long COVID-19 patients. This study aims to delve deeper into the immune landscape of patients with prolonged symptoms by implementing single-cell mRNA analysis.
A 71-year-old COVID-19 patient presenting with persistent viral pneumonia was recruited, and peripheral blood samples were taken at 3 and 2 years post-acute infection onset. Patients and control peripheral blood mononuclear cells (PBMCs) were isolated and single-cell sequenced. Immune cell population identification was carried out using the ScType script.
Three months post-COVID-19 patients’ PBMCs contained a significantly larger immature neutrophil population compared to 2-year and control samples. However, the neutrophil balance shifted towards a more mature profile after 18 months. In addition, a notable increase in the CD8+ NKT-like cells could be observed in the 3-month patient sample as compared to the later one and control. The subsequent change in these cell populations over time may be an indicator of an ongoing failure to clear the SARS-CoV-2 infection and, thus, lead to chronic COVID-19 complications.
Source: Vaivode K, Saksis R, Litvina HD, Niedra H, Spriņģe ML, Krūmiņa U, Kloviņš J, Rovite V. Single-Cell RNA Sequencing Reveals Alterations in Patient Immune Cells with Pulmonary Long COVID-19 Complications. Current Issues in Molecular Biology. 2024; 46(1):461-468. https://doi.org/10.3390/cimb46010029 https://www.mdpi.com/1467-3045/46/1/29 (Full text)

Features of acute COVID-19 associated with post-acute sequelae of SARS-CoV-2 phenotypes: results from the IMPACC study

Abstract:

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities.

During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.

Source: Ozonoff, A., Jayavelu, N.D., Liu, S. et al. Features of acute COVID-19 associated with post-acute sequelae of SARS-CoV-2 phenotypes: results from the IMPACC study. Nat Commun 15, 216 (2024). https://doi.org/10.1038/s41467-023-44090-5 https://www.nature.com/articles/s41467-023-44090-5 (Full text)

Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach

Abstract:

The dermatological manifestations of Long Covid (LC) have languished in the shadows of chronic fatigue and brain fog. Yet they are all linked by gut dysbiosis and the cytokine triad of TNF-α, IL-1β, and IL-6. The gut microbiome common not only to LC, psoriasis, AA, and vitiligo but also to neurodegenerative disease has been recently described. This gut microbiome induces an altered tryptophan metabolism linked to autoimmune disease. SARS CoV2 invades enterochromaffin cells rich in ACE2 receptors and curtails absorption of the essential amino acid tryptophan and subsequent synthesis of serotonin and melatonin.

This review suggests that an etiologic prebiotic (d-mannose)/probiotic (lactobacilli, bifidobacteria)/postbiotic (butyrate) approach to autoimmune skin disease that improves intestinal barrier integrity and that suppresses the triad of TNF-α, IL-6, and IL-1β may enhance or even eliminate the traditional immunotherapy of targeted monoclonal antibodies, Janus kinase inhibitors, and steroids. Health benefits of this approach extend well beyond suppression of autoimmune skin disease.

Source: Chambers, P.W.; Chambers, S.E. Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach. Preprints 2023, 2023121881. https://doi.org/10.20944/preprints202312.1881.v2 https://www.preprints.org/manuscript/202312.1881/v2 (Full text available as PDF file)

Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series

Highlights:

• Both Long COVID and ME/CFS are characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα.

• In a small Long COVID and ME/CFS case series, patients’ immune deficiency and health improve during treatment period with a nebulized antioxidant, anti-pathogen and immune-modulatory pharmacological agent.

• This work provides evidence of a useful biomarker, CD8 T-cell dysfunction reminiscent of T cell exhaustion, that may assist diagnosis and have utility for tracking disease outcome during therapy, including response to a potential new treatment.

Abstract:

Background: Patients with post-acute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC, i.e., Long COVID) have a symptom complex highly analogous to many features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting they may share some aspects of pathogenesis in these similar disorders. ME/CFS is a complex disease affecting numerous organ systems and biological processes and is often preceded by an infection-like episode. It is postulated that the chronic manifestations of illness may result from an altered host response to infection or inability to resolve inflammation, as is being reported in Long COVID. The immunopathogenesis of both disorders is still poorly understood. Here, we show data that suggest Long COVID and ME/CFS may be due to an aberrant response to an immunological trigger-like infection, resulting in a dysregulated immune system with CD8 T-cell dysfunction reminiscent of some aspects of T-cell clonal exhaustion, a phenomenon associated with oxidative stress. As there is an urgent need for diagnostic tools and treatment strategies for these two related disabling disorders, here, in a retrospective case series, we have also identified a potential nebulized antioxidant/anti-pathogen treatment that has evidence of a good safety profile. This nebulized agent is comprised of five ingredients previously reported individually to relieve oxidative stress, attenuate NF-κB signaling, and/or to act directly to inhibit pathogens, including viruses. Administration of this treatment by nebulizer results in rapid access of small doses of well-studied antioxidants and agents with anti-pathogen potential to the lungs; components of this nebulized agent are also likely to be distributed systemically, with potential to enter the central nervous system.

Methods and Findings: We conducted an analysis of CD8 T-cell function and severity of symptoms by self-report questionnaires in ME/CFS, Long COVID and healthy controls. We developed a CD8 T-cell functional assay, assessing CD8 T-cell dysfunction by intracellular cytokine staining (ICS) in a group of ME/CFS (n = 12) and Long COVID patients (n = 8), comparing to healthy controls (HC) with similar age and sex (n = 10). Magnet-enriched fresh CD8 T-cells in both patient groups had a significantly diminished capacity to produce both cytokines, IFNγ or TNFα, after PMA stimulation when compared to HC. The symptom severity questionnaire showed similar symptom profiles for the two disorders. Fortuitously, through a retrospective case series, we were able to examine the ICS and questionnaire data of 4 ME/CFS and 4 Long COVID patients in conjunction with their treatment (3–15 months). In parallel with the treatment pursued electively by participants in this retrospective case series, there was an increase in CD8 T-cell IFNγ and TNFα production and a decrease in overall self-reported symptom severity score by 54%. No serious treatment-associated side effects or laboratory anomalies were noted in these patients.

Conclusions: Here, in this small study, we present two observations that appear potentially fundamental to the pathogenesis and treatment of Long COVID and ME/CFS. The first is that both disorders appear to be characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα. The second is that in a small retrospective Long COVID and ME/CFS case series, this immune dysfunction and patient health improved in parallel with treatment with an immunomodulatory, antioxidant pharmacological treatment with anticipated anti-pathogen activity. This work provides evidence of the potential utility of a biomarker, CD8 T-cell dysfunction, and suggests the potential for benefit from a new nebulized antioxidant/anti-pathogen treatment. These immune biomarker data may help build capacity for improved diagnosis and tracking of treatment outcomes during clinical trials for both Long COVID and ME/CFS while providing clues to new treatment avenues that suggest potential efficacy for both conditions.

Source: Gil, A., Hoag, G.E., Salerno, J.P., Hornig, M., Klimas, N., Selin, L.K. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/antipathogen agent in a retrospective case series. Brain, Behavior, & Immunity – Health (2024), doi: https://doi.org/10.1016/j.bbih.2023.100720 https://www.sciencedirect.com/science/article/pii/S2666354623001345 (Full text)

Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection

Abstract:

Background Neutrophils are important in the pathophysiology of COVID-19 but the molecular changes contributing to altered neutrophil phenotypes following SARS-CoV-2 infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery.

Methods Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May-December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched non-infected controls. Neutrophils were isolated from peripheral blood and analysed by mass spectrometry. COVID-19 severity and recovery were defined using the WHO ordinal scale.

Results Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in neutrophils from COVID-19 patients compared to non-infected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon (IFN) signature but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors.

Conclusions SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.

Footnotes

This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Please open or download the PDF to view this article.

Source: Merete B Long, Andrew JM Howden, Holly R Keir, Christina M Rollings, Yan Hui Giam, Thomas Pembridge, Lilia Delgado, Hani Abo-Leyah, Amy F Lloyd, Gabriel Sollberger, Rebecca Hull, Amy Gilmour, Chloe Hughes, Benjamin JM New, Diane Cassidy, Amelia Shoemark, Hollian Richardson, Angus I Lamond, Doreen A Cantrell, James D Chalmers, Alejandro J Brenes. Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection.

Long-COVID-19: the persisting imprint of SARS-CoV-2 infections on the innate immune system

In a recent Cell publication, Cheong et al. uncover how COVID-19 causes IL-6 induced epigenetic reprogramming of human immune stem cells, which causes lasting alterations in the composition and response characteristics of circulating immune cells.1 The study provides important insights into the mechanisms by which SARS-CoV-2 infections impact the human immune system and is an important hook into unraveling the mechanisms of post-acute sequelae of COVID-19 (PASC) commonly referred to as long-COVID.

While vaccination and drugs are reducing the societal impact of acute SARS-CoV-2 infections, between 10 and 40% of patients continue to suffer long after the acute infection has been cleared. The diverse PASC symptoms range from short breath and headaches to cognitive impairment (‘brain fog’) and debilitating fatigue. Not only are no treatments for PASC available but also the underlying molecular mechanisms remain opaque.2

Cheong et al. investigated in patients’ circulating immune cells if detectable changes persisted after clearance of the acute SARS-CoV-2 infection 3 weeks after the first symptoms. They assembled a cohort of COVID-19 convalescent patients, which was sampled between 1–3 and 4–12 months after SARS-CoV-2 infections requiring intensive care unit (ICU) admission and compared these patients to non-infected controls and to patients that had been on the ICU for different reasons. Focusing on peripheral blood mononuclear cells (PBMC) they investigated transcriptional or epigenetic changes using an integrated pipeline of single-nuclei transcriptome analysis and ATAC-seq sequencing, which identifies accessible chromatin regions. Among PBMCs CD14+ monocytes exhibited the most drastic changes. CD14+ monocytes are a group of heterogenous, short-lived antigen presenting cells that help orchestrating immune responses. Among these the authors could distinguish one cluster, M.SC3, which was more abundant even 12 months after the infection. Cells in this cluster resembled intermediate-type monocytes with functions that altogether resemble dendritic cells, the most effective amongst professional antigen presenting cells. In response to stimuli indicating viral infections, post-COVID monocytes showed up to 100-fold increased secretion of proinflammatory cytokines and enhanced transcriptional responses relating to cytokine signaling and monocyte activation. ATAC-seq also revealed a persistent pattern of differentially accessible chromatin which increased in abundance in early convalescent patients and did not return to the low levels observed in healthy individuals even 12 months after the acute infection. Thus, following severe SARS-CoV-2 infections, patients’ CD14+ monocytes carry specific and persistent epigenetic changes that puts them into an alerted state with heightened response characteristics.

Given that monocytes have a lifespan of a single day, the discovery of persistent epigenetic changes is notable and may reflect altered hematopoiesis and inheritance of epigenetic states from hematopoietic stem and progenitor cells (HSPC). To overcome the challenges associated with obtaining bone marrow resident HSPC, Cheong et al. developed a platform to enrich rare circulating HSPCs from PBMC and demonstrated that these faithfully represent the diversity and functional characteristics of their bone marrow-derived counterparts. With this platform, they discovered lasting epigenetic changes in HSPC of post-COVID patients that resembled those observed in mature monocytes. Especially late post-COVID HSPC exhibited skewed hematopoiesis with a significant increase of granulocyte monocyte precursor (GMP) cells. Intriguingly, the stem cells and the mature monocytes shared epigenetic signatures indicating that epigenetic and transcriptional programs are inherited by the mature progeny. The previously identified M.SC3 module activity was similarly increased in stem cells of the same patients.

Read the rest of this article HERE

Source: Boes, M., Falter-Braun, P. Long-COVID-19: the persisting imprint of SARS-CoV-2 infections on the innate immune system. Sig Transduct Target Ther 8, 460 (2023). https://doi.org/10.1038/s41392-023-01717-9 https://www.nature.com/articles/s41392-023-01717-9 (Full text)

Complement dysregulation is a predictive and therapeutically amenable feature of long COVID

Abstract:

Background Long COVID encompasses a heterogeneous set of ongoing symptoms that affect many individuals after recovery from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying biological mechanisms nonetheless remain obscure, precluding accurate diagnosis and effective intervention. Complement dysregulation is a hallmark of acute COVID-19 but has not been investigated as a potential determinant of long COVID.

Methods We quantified a series of complement proteins, including markers of activation and regulation, in plasma samples from healthy convalescent individuals with a confirmed history of infection with SARS-CoV-2 and age/ethnicity/gender/infection/vaccine-matched patients with long COVID.

Findings Markers of classical (C1s-C1INH complex), alternative (Ba, iC3b), and terminal pathway (C5a, TCC) activation were significantly elevated in patients with long COVID. These markers in combination had a receiver operating characteristic predictive power of 0.794. Other complement proteins and regulators were also quantitatively different between healthy convalescent individuals and patients with long COVID. Generalized linear modeling further revealed that a clinically tractable combination of just four of these markers, namely the activation fragments iC3b, TCC, Ba, and C5a, had a predictive power of 0.785.

Conclusions These findings suggest that complement biomarkers could facilitate the diagnosis of long COVID and further suggest that currently available inhibitors of complement activation could be used to treat long COVID.

Source: Kirsten Baillie, Helen E Davies, Samuel B K Keat, Kristin Ladell, Kelly L Miners, Samantha A Jones, Ermioni Mellou, Erik J M Toonen, David A Price, B Paul Morgan, Wioleta M Zelek. Complement dysregulation is a predictive and therapeutically amenable feature of long COVID.
medRxiv 2023.10.26.23297597; doi: https://doi.org/10.1101/2023.10.26.23297597 https://www.medrxiv.org/content/10.1101/2023.10.26.23297597v1.full-text (Full text)

Risk Factors for Long COVID in Older Adults

Abstract:

As time has passed following the COVID-19 pandemic, individuals infected with SARS-CoV-2 have gradually exhibited a variety of symptoms associated with long COVID in the postacute phase of infection. Simultaneously, in many countries worldwide, the process of population aging has been accelerating. Within this context, the elderly population has not only become susceptible and high-risk during the acute phase of COVID-19 but also has considerable risks when confronting long COVID.
Elderly individuals possess specific immunological backgrounds, and during the process of aging, their immune systems can enter a state known as “immunosenescence”. This further exacerbates “inflammaging” and the development of various comorbidities in elderly individuals, rendering them more susceptible to long COVID. Additionally, long COVID can inflict both physical and mental harm upon elderly people, thereby reducing their overall quality of life. Consequently, the impact of long COVID on elderly people should not be underestimated.
This review seeks to summarize the infection characteristics and intrinsic factors of older adults during the COVID-19 pandemic, with a focus on the physical and mental impact of long COVID. Additionally, it aims to explore potential strategies to mitigate the risk of long COVID or other emerging infectious diseases among older adults in the future.
Source: Hu Y, Liu Y, Zheng H, Liu L. Risk Factors for Long COVID in Older Adults. Biomedicines. 2023; 11(11):3002. https://doi.org/10.3390/biomedicines11113002 https://www.mdpi.com/2227-9059/11/11/3002 (Full text)