Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months

Abstract:

COVID-19 causes immune perturbations which may persist long-term, and patients frequently report ongoing symptoms for months after recovery. We assessed immune activation at 3-12 months post hospital admission in 187 samples from 63 patients with mild, moderate or severe disease and investigated whether it associates with long COVID.

At 3 months, patients with severe disease displayed persistent activation of CD4+ and CD8+ T-cells, based on expression of HLA-DR, CD38, Ki67 and granzyme B, and elevated plasma levels of IL-4, IL-7, IL-17 and TNF-α compared to mild and/or moderate patients. Plasma from severe patients at 3 months caused T-cells from healthy donors to upregulate IL-15Rα, suggesting that plasma factors in severe patients may increase T-cell responsiveness to IL-15-driven bystander activation.

Patients with severe disease reported a higher number of long COVID symptoms which did not however, correlate with cellular immune activation/pro-inflammatory cytokines after adjusting for age, sex and disease severity. Our data suggests that long COVID and persistent immune activation may correlate independently with severe disease.

Source: Marianna Santopaolo, Michaela Gregorova, Fergus Hamilton, David Arnold, Anna Long, Aurora Lacey, Alice Halliday, Holly Baum, Kristy Hamilton, Rachel Milligan, Elizabeth Oliver, Olivia Pearce, Lea Knezevic, Begonia Morales Aza, Alice Milne, Emily Milodowski, Eben Jones, Rajeka Lazarus, Anu Goenka, Adam Finn, Nicholas Maskell, Andrew D Davidson, Kathleen Gillespie, Linda Wooldridge, Laura Rivino (2023) Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months eLife 12:e85009 https://doi.org/10.7554/eLife.85009 https://elifesciences.org/articles/85009

Increased circulating fibronectin, depletion of natural IgM and heightened EBV, HSV-1 reactivation in ME/CFS and long COVID

Abstract:

Myalgic Encephalomyelitis/ Chronic Fatigue syndrome (ME/CFS) is a complex, debilitating, long-term illness without a diagnostic biomarker. ME/CFS patients share overlapping symptoms with long COVID patients, an observation which has strengthened the infectious origin hypothesis of ME/CFS. However, the exact sequence of events leading to disease development is largely unknown for both clinical conditions.

Here we show antibody response to herpesvirus dUTPases, particularly to that of Epstein-Barr virus (EBV) and HSV-1, increased circulating fibronectin (FN1) levels in serum and depletion of natural IgM against fibronectin ((n)IgM-FN1) are common factors for both severe ME/CFS and long COVID. We provide evidence for herpesvirus dUTPases-mediated alterations in host cell cytoskeleton, mitochondrial dysfunction and OXPHOS.

Our data show altered active immune complexes, immunoglobulin-mediated mitochondrial fragmentation as well as adaptive IgM production in ME/CFS patients. Our findings provide mechanistic insight into both ME/CFS and long COVID development. Finding of increased circulating FN1 and depletion of (n)IgM-FN1 as a biomarker for the severity of both ME/CFS and long COVID has an immediate implication in diagnostics and development of treatment modalities.

Source: Zheng Liu, Claudia Hollmann, Sharada Kalanidhi, Arnhild Grothey, Samuel Keating, Irene Mena-Palomo, Stephanie Lamer, Andreas Schlosser, Agnes Kaiping, Carsten Scheller, Franziska Sotzny, Anna Horn, Carolin Nuernberger, Vladimir Cejka, Boshra Afshar, Thomas Bahmer, Stefan Schreiber, Joerg Janne Vehreschild, Olga Milljukov, Christian Schaefer, Luzie Kretzler, Thomas Keil, Jens-Peter Reese, Felizitas A Eichner, Lena Schmidbauer, Peter U Heuschmann, Stefan Stoerk, Caroline Morbach, Gabriela Riemekasten, Niklas Beyersdorf, Carmen Scheibenbogen, Robert K Naviaux, Marshall Williams, Maria E Ariza, Bhupesh Kumar Prusty. Increased circulating fibronectin, depletion of natural IgM and heightened EBV, HSV-1 reactivation in ME/CFS and long COVID. medRxiv 2023.06.23.23291827; doi: https://doi.org/10.1101/2023.06.23.23291827 https://www.medrxiv.org/content/10.1101/2023.06.23.23291827v1 (Full text available as PDF file)

Persistent serum protein signatures define an inflammatory subcategory of long COVID

Abstract:

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months following acute SARS-CoV-2 infection. The aetiologies may include persistent inflammation, unresolved tissue damage or delayed clearance of viral protein or RNA, but the biological differences they represent are not fully understood. Here we evaluate the serum proteome in samples, longitudinally collected from 55 PASC individuals with symptoms lasting ≥60 days after onset of acute infection, in comparison to samples from symptomatically recovered SARS-CoV-2 infected and uninfected individuals.

Our analysis indicates heterogeneity in PASC and identified subsets with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly associated with TNF), appear to be the most differentially enriched signaling pathways, distinguishing a group of patients characterized also by a persistent neutrophil activation signature.

These findings help to clarify biological diversity within PASC, identify participants with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance, including a protein panel that we propose as having diagnostic utility for differentiating inflammatory and non-inflammatory PASC.

Source: Talla, A., Vasaikar, S.V., Szeto, G.L. et al. Persistent serum protein signatures define an inflammatory subcategory of long COVID. Nat Commun 14, 3417 (2023). https://doi.org/10.1038/s41467-023-38682-4 https://www.nature.com/articles/s41467-023-38682-4 (Full text)

Increasing serum soluble CD40 ligand (sCD40L) may be a biomarker of ME/CFS and chronic Long COVID progression

Abstract:

To date, no single blood lab test exists to diagnose or track ME/CFS or chronic Long COVID. Based on existing literature, this article brings together evidence that a molecule secreted by the immune system called sCD40L tends to become increasingly elevated in ME/CFS, Long COVID, and Multiple Sclerosis.

These studies, along with what’s known about the role of sCD40L in health and other diseases, suggest sCD40L may be useful to track over time in ME/CFS and Long COVID patients.

Source: Vijay Iyer. Increasing serum soluble CD40 ligand (sCD40L) may be a biomarker of ME/CFS and chronic Long COVID progression. Patient-Generated Hypotheses Journal | Issue 1, May 2023. https://patientresearchcovid19.com/storage/2023/05/Patient-Generated-Hypotheses-Issue-1-May-2023.pdf#page=42 (Full text)

Use Of Total-Body Pet Imaging To Identify Deep-Tissue Sars-Cov-2 Viral Reservoirs And T Cell Responses In Patients With Long Covid

Project Summary:

This study is the first in the world to use advanced imaging technologies to identify deep tissue SARS-CoV-2 reservoirs and T cell activity in LongCovid study participants. Specifically the team will use longitudinal ImmunoPET-CT imaging of radiolabeled SARS-CoV-2-specific monoclonal antibodies (mAbs) to identify SARS-CoV-2 tissue reservoirs in individuals with Long COVID. The project team is also using ImmunoPET-CT imaging to identify the spatial and temporal dynamics of tissue-based T cell activity in Long COVID study participants.

Tissue biopsy samples from the lymph node and gut will also be collected from Long COVID study participants undergoing imaging. These tissue samples will be analyzed for SARS-CoV-2 RNA, spike, and nucleocapsid proteins, other chronic viruses (e.g., Epstein-Barr virus and cytomegalovirus), and cellular immune responses. Data collected on the tissue samples will be correlated with the imaging data, so that potential viral reservoirs and T cell activity in study participants can be validated by overlapping methods.

Read full article HERE.

Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics

Abstract:

Background: SARS-CoV-2 is a highly infectious respiratory virus associated with coronavirus disease (COVID-19). Discoveries in the field revealed that inflammatory conditions exert a negative impact on bone metabolism; however, only limited studies reported the consequences of SARS-CoV-2 infection on skeletal homeostasis. Inflammatory immune cells (T helper—Th17 cells and macrophages) and their signature cytokines such as interleukin (IL)-6, IL-17, and tumor necrosis factor-alpha (TNF-α) are the major contributors to the cytokine storm observed in COVID-19 disease. Our group along with others has proven that an enhanced population of both inflammatory innate (Dendritic cells—DCs, macrophages, etc.) and adaptive (Th1, Th17, etc.) immune cells, along with their signature cytokines (IL-17, TNF-α, IFN-γ, IL-6, etc.), are associated with various inflammatory bone loss conditions. Moreover, several pieces of evidence suggest that SARS-CoV-2 infects various organs of the body via angiotensin-converting enzyme 2 (ACE2) receptors including bone cells (osteoblasts—OBs and osteoclasts—OCs). This evidence thus clearly highlights both the direct and indirect impact of SARS-CoV-2 on the physiological bone remodeling process. Moreover, data from the previous SARS-CoV outbreak in 2002–2004 revealed the long-term negative impact (decreased bone mineral density—BMDs) of these infections on bone health.

Methodology: We used the keywords “immunopathogenesis of SARS-CoV-2,” “SARS-CoV-2 and bone cells,” “factors influencing bone health and COVID-19,” “GUT microbiota,” and “COVID-19 and Bone health” to integrate the topics for making this review article by searching the following electronic databases: PubMed, Google Scholar, and Scopus.

Conclusion: Current evidence and reports indicate the direct relation between SARS-CoV-2 infection and bone health and thus warrant future research in this field. It would be imperative to assess the post-COVID-19 fracture risk of SARS-CoV-2-infected individuals by simultaneously monitoring them for bone metabolism/biochemical markers. Importantly, several emerging research suggest that dysbiosis of the gut microbiota—GM (established role in inflammatory bone loss conditions) is further involved in the severity of COVID-19 disease. In the present review, we thus also highlight the importance of dietary interventions including probiotics (modulating dysbiotic GM) as an adjunct therapeutic alternative in the treatment and management of long-term consequences of COVID-19 on bone health.

Source: Sapra L, Saini C, Garg B, Gupta R, Verma B, Mishra PK, Srivastava RK. Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics. Inflamm Res. 2022 Sep;71(9):1025-1040. doi: 10.1007/s00011-022-01616-9. Epub 2022 Jul 28. PMID: 35900380; PMCID: PMC9330992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330992/ (Full text)

Autoantibody production is enhanced after mild SARS-CoV-2 infection despite vaccination in individuals with and without long COVID

Abstract:

Long COVID patients who experienced severe acute SARS-CoV-2 infection can present with humoral autoimmunity. However, whether mild SARS-CoV-2 infection increases autoantibody responses and whether vaccination can decrease autoimmunity in long COVID patients is unknown.

Here, we demonstrate that mild SARS-CoV-2 infection increases autoantibodies associated with systemic lupus erythematosus (SLE) and inflammatory myopathies in long COVID patients with persistent neurologic symptoms to a greater extent than COVID convalescent controls at 8 months post-infection. Furthermore, high titers of SLE-associated autoantibodies in long COVID patients are associated with impaired cognitive performance and greater symptom severity, and subsequent vaccination/booster does not decrease autoantibody titers.

In summary, we found that mild SARS-CoV-2 infection can induce persistent humoral autoimmunity in both long COVID patients and healthy COVID convalescents, suggesting that a reappraisal of vaccination and mitigation strategies is warranted.

Source: Visvabharathy L, Zhu C, Orban ZS, Yarnoff K, Palacio N, Jimenez M, Lim PH, Penaloza-MacMaster P, Koralnik IJ. Autoantibody production is enhanced after mild SARS-CoV-2 infection despite vaccination in individuals with and without long COVID. medRxiv [Preprint]. 2023 Apr 12:2023.04.07.23288243. doi: 10.1101/2023.04.07.23288243. PMID: 37090595; PMCID: PMC10120795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120795/ (Full text)

Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC)

Abstract:

With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis.

In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.

Source: Sindhu MohandasPrasanna JagannathanTimothy J HenrichZaki A SherifChristian BimeErin QuinlanMichael A PortmanMarila GennaroJalees RehmanRECOVER Mechanistic Pathways Task Force (2023) Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC) eLife 12:e86014. https://elifesciences.org/articles/86014 (Full text)

Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms

Abstract:

Importance: Persistent depressive symptoms, often accompanied by cognitive symptoms, commonly occur after COVID-19 illness (hereinafter termed COVID-DC, DC for depressive and/or cognitive symptoms). In patients with COVID-DC, gliosis, an inflammatory change, was suspected, but measurements of gliosis had not been studied in the brain for this condition.

Objective: To determine whether translocator protein total distribution volume (TSPO VT), a marker of gliosis that is quantifiable with positron emission tomography (PET), is elevated in the dorsal putamen, ventral striatum, prefrontal cortex, anterior cingulate cortex, and hippocampus of persons with COVID-DC.

Design, setting, and participants: This case-control study conducted at a tertiary care psychiatric hospital in Canada from April 1, 2021, to June 30, 2022, compared TSPO VT of specific brain regions in 20 participants with COVID-DC with that in 20 healthy controls. The TSPO VT was measured with fluorine F 18-labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) PET.

Main outcomes and measures: The TSPO VT was measured in the dorsal putamen, ventral striatum, prefrontal cortex, anterior cingulate cortex, and hippocampus. Symptoms were measured with neuropsychological and psychological tests, prioritizing outcomes related to striatal function.

Results: The study population included 40 participants (mean [SD] age, 32.9 [12.3] years). The TSPO VT across the regions of interest was greater in persons with COVID-DC (mean [SD] age, 32.7 [11.4] years; 12 [60%] women) compared with healthy control participants (mean [SD] age, 33.3 [13.9] years; 11 [55%] women): mean (SD) difference, 1.51 (4.47); 95% CI, 0.04-2.98; 1.51 divided by 9.20 (17%). The difference was most prominent in the ventral striatum (mean [SD] difference, 1.97 [4.88]; 95% CI, 0.36-3.58; 1.97 divided by 8.87 [22%]) and dorsal putamen (mean difference, 1.70 [4.25]; 95% CI, 0.34-3.06; 1.70 divided by 8.37 [20%]). Motor speed on the finger-tapping test negatively correlated with dorsal putamen TSPO VT (r, -0.53; 95% CI, -0.79 to -0.09), and the 10 persons with the slowest speed among those with COVID-DC had higher dorsal putamen TSPO VT than healthy persons by 2.3 (2.30 divided by 8.37 [27%]; SD, 2.46; 95% CI, 0.92-3.68).

Conclusions and relevance: In this case-control study, TSPO VT was higher in patients with COVID-DC. Greater TSPO VT is evidence for an inflammatory change of elevated gliosis in the brain of an individual with COVID-DC. Gliosis may be consequent to inflammation, injury, or both, particularly in the ventral striatum and dorsal putamen, which may explain some persistent depressive and cognitive symptoms, including slowed motor speed, low motivation or energy, and anhedonia, after initially mild to moderate COVID-19 illness.

Source: Braga J, Lepra M, Kish SJ, Rusjan PM, Nasser Z, Verhoeff N, Vasdev N, Bagby M, Boileau I, Husain MI, Kolla N, Garcia A, Chao T, Mizrahi R, Faiz K, Vieira EL, Meyer JH. Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms. JAMA Psychiatry. 2023 May 31:e231321. doi: 10.1001/jamapsychiatry.2023.1321. Epub ahead of print. PMID: 37256580; PMCID: PMC10233457. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233457/ (Full text)

Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study

Abstract:

COVID-19-associated vascular disease complications are primarily associated with endothelial dysfunction; however, the consequences of disease on vascular structure and function, particularly in the long term (>7 weeks post-infection), remain unexplored. Individual pre- and post-infection changes in arterial stiffness as well as central and systemic hemodynamic parameters were measured in patients diagnosed with mild COVID-19.
As part of in-laboratory observational studies, baseline measurements were taken up to two years before, whereas the post-infection measurements were made 2–3 months after the onset of COVID-19. We used the same measurement protocol throughout the study as well as linear and mixed-effects regression models to analyze the data. Patients (N = 32) were predominantly healthy and young (mean age ± SD: 36.6 ± 12.6). We found that various parameters of arterial stiffness and central hemodynamics—cfPWV, AIx@HR75, and cDBP as well as DBP and MAP—responded to a mild COVID-19 disease.
The magnitude of these responses was dependent on the time since the onset of COVID-19 as well as age (pregression_models ≤ 0.013). In fact, mixed-effects models predicted a clinically significant progression of vascular impairment within the period of 2–3 months following infection (change in cfPWV by +1.4 m/s, +15% in AIx@HR75, approximately +8 mmHg in DBP, cDBP, and MAP).
The results point toward the existence of a widespread and long-lasting pathological process in the vasculature following mild COVID-19 disease, with heterogeneous individual responses, some of which may be triggered by an autoimmune response to COVID-19.
Source: Podrug M, Koren P, Dražić Maras E, Podrug J, Čulić V, Perissiou M, Bruno RM, Mudnić I, Boban M, Jerončić A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. Journal of Clinical Medicine. 2023; 12(6):2123. https://doi.org/10.3390/jcm12062123 https://www.mdpi.com/2077-0383/12/6/2123 (Full text)