Biological mechanisms underpinning the development of Long COVID

Abstract:

As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-COV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences.

Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available.

To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.

Source: Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, Vahlne A, Nikolich J. Biological mechanisms underpinning the development of Long COVID. iScience. 2023 May 18:106935. doi: 10.1016/j.isci.2023.106935. Epub ahead of print. PMCID: PMC10193768. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193768/ https://www.cell.com/iscience/pdf/S2589-0042(23)01012-X.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS258900422301012X%3Fshowall%3Dtrue (Full text)

Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights Into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges

Abstract:

Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; chronic, low grade inflammatory response; immune dysregulation and defective immune response; reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal dysregulation, mitochondrial dysfunction; and autonomic nervous system dysfunction.

There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; as well as cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers or their link to etiopathogenetic mechanisms, and the diagnostic work-up in a comprehensive manner.

Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on main LC symptomatology in the frame of the epidemiological and pathogenetic aspects of the syndrome, and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.

Source: Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Christodoulatos, G.S.; Papavasileiou, G.; Petropoulou, D.; Magkos, F.; Dalamaga, M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights Into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Preprints.org 2023, 2023051487. https://doi.org/10.20944/preprints202305.1487.v1 (Full text available as PDF file)

Viable SARS-CoV-2 Omicron sub-variants isolated from autopsy tissues

Introduction: Pulmonary and extrapulmonary manifestations have been described after infection with SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The virus is known to persist in multiple organs due to its tropism for several tissues. However, previous reports were unable to provide definitive information about whether the virus is viable and transmissible. It has been hypothesized that the persisting reservoirs of SARS-CoV-2 in tissues could be one of the multiple potentially overlapping causes of long COVID.

Methods: In the present study, we investigated autopsy materials obtained from 21 cadaveric donors with documented first infection or reinfection at the time of death. The cases studied included recipients of different formulations of COVID-19 vaccines. The aim was to find the presence of SARS-CoV-2 in the lungs, heart, liver, kidneys, and intestines. We used two technical approaches: the detection and quantification of viral genomic RNA using RT-qPCR, and virus infectivity using permissive in vitro Vero E6 culture.

Results: All tissues analyzed showed the presence of SARS-CoV-2 genomic RNA but at dissimilar levels ranging from 1.01 × 102 copies/mL to 1.14 × 108 copies/mL, even among those cases who had been COVID-19 vaccinated. Importantly, different amounts of replication-competent virus were detected in the culture media from the studied tissues. The highest viral load were measured in the lung (≈1.4 × 106 copies/mL) and heart (≈1.9 × 106 copies/mL) samples. Additionally, based on partial Spike gene sequences, SARS-CoV-2 characterization revealed the presence of multiple Omicron sub-variants exhibiting a high level of nucleotide and amino acid identity among them.

Discussion: These findings highlight that SARS-CoV-2 can spread to multiple tissue locations such as the lungs, heart, liver, kidneys, and intestines, both after primary infection and after reinfections with the Omicron variant, contributing to extending knowledge about the pathogenesis of acute infection and understanding the sequelae of clinical manifestations that are observed during post-acute COVID-19.

Source: Santiago Maffia-Bizzozero, Cintia Cevallos, Federico Remes Lenicov, Rosa Nicole Freiberger, Cinthya Alicia Marcela Lopez, Alex Guano Toaquiza, Franco Sviercz, Patricio Jarmoluk, Cristina Bustos, Adriana Claudia D’Addario, Jorge Quarleri, and M. Victoria Delpino. Viable SARS-CoV-2 Omicron sub-variants isolated from autopsy tissues. Front. Microbiol., 22 May 2023. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1192832/full (Full text)

From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID

Abstract:

Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms.
The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses.
In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Source: Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. International Journal of Molecular Sciences. 2023; 24(9):8290. https://doi.org/10.3390/ijms24098290 https://www.mdpi.com/1422-0067/24/9/8290 (Full text)

Intrinsic factors behind long-COVID: I. Prevalence of the extracellular vesicles

Abstract:

It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity.

However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID.

In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both?

Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.

Source: El-Maradny YA, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: I. Prevalence of the extracellular vesicles. J Cell Biochem. 2023 May;124(5):656-673. doi: 10.1002/jcb.30415. Epub 2023 May 1. PMID: 37126363. https://pubmed.ncbi.nlm.nih.gov/37126363/

Netosis -A double-edged sword in the Pathogenesis of LONG COVID

Abstract:

The emergence of COVID-19 as a global pandemic has had far-reaching effects on the health of individuals worldwide. Although there has been a decrease in the severity of the disease, there is a growing concern about the long-term impact of COVID-19 on the health of individuals, particularly cardiovascular complications, known as Long-COVID, which can significantly increase morbidity and mortality rates in people recovering from COVID-19 in the recent past.
The severity of COVID-19 has been linked to various factors, including the role of neutrophils and neutrophil extracellular traps (NET). These extracellular webs, composed of chromatin, microbicidal proteins, and oxidant enzymes, are released by neutrophils to fight infections. However, if not properly regulated, NETs can lead to thrombo-inflammatory states and microangiopathy in the body, resulting in complications such as sepsis, thrombosis, and respiratory failure.
Understanding the detailed pathophysiology and association of NETs with the prognosis of COVID-19 infection is crucial for future implications and management. The purpose of this review is to analyze the potential contribution of NETosis in the pathophysiology of COVID-19 and its subsequent complications apart from its beneficial effect. This may provide insight into potential therapeutic interventions for COVID-19 patients.
Source: Durre Aden, vagisha sharma, sufian zaheer, et al. Netosis -A double-edged sword in the Pathogenesis of LONG COVID. Authorea. April 28, 2023. https://www.authorea.com/users/570888/articles/640398-netosis-a-double-edged-sword-in-the-pathogenesis-of-long-covid (Full text available as PDF file)

Damage to endothelial barriers and its contribution to long COVID

Abstract:

The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development.

Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage.

During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.

Source: Wu X, Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis. 2023 Apr 27:1–18. doi: 10.1007/s10456-023-09878-5. Epub ahead of print. PMID: 37103631; PMCID: PMC10134732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134732/ (Full text)

Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response

Abstract:

Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis.

Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor β7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease.  Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC.

In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+β7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.

Source: Santa Cruz A, Mendes-Frias A, Azarias-da-Silva M, André S, Oliveira AI, Pires O, Mendes M, Oliveira B, Braga M, Lopes JR, Domingues R, Costa R, Silva LN, Matos AR, Ângela C, Costa P, Carvalho A, Capela C, Pedrosa J, Castro AG, Estaquier J, Silvestre R. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nat Commun. 2023 Mar 30;14(1):1772. doi: 10.1038/s41467-023-37368-1. PMID: 36997530; PMCID: PMC10061413. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061413/ (Full text)

Long Covid: clues about causes

Abstract:(Full text

Many patients report persistent symptoms after resolution of acute COVID-19, regardless of SARS-CoV-2 variant and even if the initial illness is mild [1, 2]. A multitude of symptoms have been described under the umbrella term ‘Long COVID’, otherwise known as ‘post-COVID syndrome’ or ‘post-acute sequelae of SARS-CoV-2 (PASC)’; for simplicity we will use the term Long COVID.

Symptoms are diverse but include breathlessness, fatigue and brain fog, reported to affect up to 69% of cases [3]. Long COVID can be debilitating, 45.2% of patients requiring a reduced work schedule [4]. The WHO estimates that 17 million people in Europe have experienced Long COVID during the first two years of the pandemic [5]. SARS-CoV-2 variants continue to circulate and the risk of post-acute complications remains; a recent study of 56 003 UK patients found that even after Omicron infection, 4.5% suffered persistent symptoms [6].

It is therefore likely that Long COVID will provide a substantial medical and economic burden for the foreseeable future. There is an urgent need to understand mechanisms of disease and develop effective treatments based on this understanding.

Source: Liew F, Efstathiou C, Openshaw PJ. Long Covid: clues about causes. Eur Respir J. 2023 Mar 23:2300409. doi: 10.1183/13993003.00409-2023. Epub ahead of print. PMID: 36958743; PMCID: PMC10040855. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040855/ (Full text)

Post-COVID Syndrome

Abstract:

Background: As defined by the WHO, the term post-COVID syndrome (PCS) embraces a group of symptoms that can occur following the acute phase of a SARS-CoV-2 infection and as a consequence thereof. PCS is found mainly in adults, less frequently in children and adolescents. It can develop both in patients who initially had only mild symptoms or none at all and in those who had a severe course of coronavirus disease 2019 (COVID-19).

Methods: The data presented here were derived from a systematic literature review.

Results: PCS occurs in up to 15% of unvaccinated adults infected with SARS-CoV-2. The prevalence has decreased in the most recent phase of the pandemic and is lower after vaccination. The pathogenesis of PCS has not yet been fully elucidated. Virus triggered inflammation, autoimmunity, endothelial damage (to blood vessels), and persistence of virus are thought to be causative. Owing to the broad viral tropism, different organs are involved and the symptoms vary. To date, there are hardly any evidence-based recommendations for definitive diagnosis of PCS or its treatment.

Conclusion: The gaps in our knowledge mean that better documentation of the prevalence of PCS is necessary to compile the data on which early detection, diagnosis, and treatment can be based. To ensure the best possible care of patients with PCS, regional PCS centers and networks embracing existing structures from all healthcare system sectors and providers should be set up and structured diagnosis and treatment algorithms should be established. Given the sometimes serious consequences of PCS for those affected, it seems advisable to keep the number of SARS-CoV-2 infections low by protective measures tailored to the prevailing pandemic situation.

Source: Hallek M, Adorjan K, Behrends U, Ertl G, Suttorp N, Lehmann C. Post-COVID Syndrome. Dtsch Arztebl Int. 2023 Jan 27;120(4):48-55. doi: 10.3238/arztebl.m2022.0409. PMID: 36633452; PMCID: PMC10060997. https://www.aerzteblatt.de/int/archive/article/229208 (Full text)