Cognitive assessment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a cognitive substudy of the multi-site clinical assessment of ME/CFS (MCAM)

Abstract:

Introduction: Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) experience cognitive problems with attention, information processing speed, working memory, learning efficiency, and executive function. Commonly, patients report worsening of cognitive symptoms over time after physical and/or cognitive challenges. To determine, monitor, and manage longitudinal decrements in cognitive function after such exposures, it is important to be able to screen for cognitive dysfunction and changes over time in clinic and also remotely at home. The primary objectives of this paper were: (1) to determine whether a brief computerized cognitive screening battery will detect differences in cognitive function between ME/CFS and Healthy Controls (HC), (2) to monitor the impact of a full-day study visit on cognitive function over time, and (3) to evaluate the impact of exercise testing on cognitive dysfunction.

Methods: This cognitive sub-study was conducted between 2013 and 2019 across seven U.S. ME/CFS clinics as part of the Multi-Site Clinical Assessment of ME/CFS (MCAM) study. The analysis included 426 participants (261 ME/CFS and 165 HC), who completed cognitive assessments including a computerized CogState Brief Screening Battery (CBSB) administered across five timepoints (T0-T4) at the start of and following a full day in-clinic visit that included exercise testing for a subset of participants (182 ME/CFS and 160 HC). Exercise testing consisted of ramped cycle ergometry to volitional exhaustion. The primary outcomes are performance accuracy and latency (performance speed) on the computerized CBSB administered online in clinic (T0 and T1) and at home (T2-T4).

Results: No difference was found in performance accuracy between ME/CFS and HCs whereas information processing speed was significantly slower for ME/CFS at most timepoints with Cohen’s d effect sizes ranging from 0.3-0.5 (p < 0.01). The cognitive decline over time on all CBSB tasks was similar for patients with ME/CFS independent of whether exercise testing was included in the clinic visit.

Conclusion: The challenges of a clinic visit (including cognitive testing) can lead to further cognitive deficits. A single short session of intense exercise does not further reduce speed of performance on any CBSB tasks.

Source: Lange G, Lin JS, Chen Y, Fall EA, Peterson DL, Bateman L, Lapp C, Podell RN, Natelson BH, Kogelnik AM, Klimas NG, Unger ER. Cognitive assessment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a cognitive substudy of the multi-site clinical assessment of ME/CFS (MCAM). Front Neurosci. 2024 Nov 1;18:1460157. doi: 10.3389/fnins.2024.1460157. PMID: 39554847; PMCID: PMC11565701. https://pmc.ncbi.nlm.nih.gov/articles/PMC11565701/ (Full text)

Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects

Abstract:

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them.

To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level – OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01).

We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus.

In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients’ cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency.

This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

Source: Serrano Del Pueblo VM, Serrano-Heras G, Romero Sánchez CM, Piqueras Landete P, Rojas-Bartolome L, Feria I, Morris RGM, Strange B, Mansilla F, Zhang L, Castro-Robles B, Arias-Salazar L, López-López S, Payá M, Segura T, Muñoz-López M. Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects. Brain. 2024 Apr 2:awae101. doi: 10.1093/brain/awae101. Epub ahead of print. PMID: 38562097. https://pubmed.ncbi.nlm.nih.gov/38562097/

Reduced Cortical Thickness Correlates of Cognitive Dysfunction in Post-COVID-19 Condition: Insights from a Long-Term Follow-up

Abstract:

Background and purpose: There is a paucity of data on long-term neuroimaging findings from individuals who have developed the post-coronavirus 2019 (COVID-19) condition. Only 2 studies have investigated the correlations between cognitive assessment results and structural MR imaging in this population. This study aimed to elucidate the long-term cognitive outcomes of participants with the post-COVID-19 condition and to correlate these cognitive findings with structural MR imaging data in the post-COVID-19 condition.

Materials and methods: A cohort of 53 participants with the post-COVID-19 condition underwent 3T brain MR imaging with T1 and FLAIR sequences obtained a median of 1.8 years after Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. A comprehensive neuropsychological battery was used to assess several cognitive domains in the same individuals. Correlations between cognitive domains and whole-brain voxel-based morphometry were performed. Different ROIs from FreeSurfer were used to perform the same correlations with other neuroimaging features.

Results: According to the Frascati criteria, more than one-half of the participants had deficits in the attentional (55%, n = 29) and executive (59%, n = 31) domains, while 40% (n = 21) had impairment in the memory domain. Only 1 participant (1.89%) showed problems in the visuospatial and visuoconstructive domains. We observed that reduced cortical thickness in the left parahippocampal region (t(48) = 2.28, = .03) and the right caudal-middle-frontal region (t(48) = 2.20, = .03) was positively correlated with the memory domain.

Conclusions: Our findings suggest that cognitive impairment in individuals with the post-COVID-19 condition is associated with long-term alterations in the structure of the brain. These macrostructural changes may provide insight into the nature of cognitive symptoms.

Source: Dacosta-Aguayo R, Puig J, Lamonja-Vicente N, Carmona-Cervelló M, Biaani León-Gómez B, Monté-Rubio G, López-Linfante VM, Zamora-Putin V, Montero-Alia P, Chacon C, Bielsa J, Moreno-Gabriel E, Garcia-Sierra R, Pachón A, Costa A, Mataró M, Prado JG, Martinez-Cáceres E, Mateu L, Massanella M, Violán C, Torán-Monserrat P; Aliança ProHEpiC-19 Cognitiu (The APC Collaborative Group). Reduced Cortical Thickness Correlates of Cognitive Dysfunction in Post-COVID-19 Condition: Insights from a Long-Term Follow-up. AJNR Am J Neuroradiol. 2024 Apr 4. doi: 10.3174/ajnr.A8167. Epub ahead of print. PMID: 38575319. https://pubmed.ncbi.nlm.nih.gov/38575319/

Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study

Abstract:

The spectrum, pathophysiology, and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the one-year cognitive, serum biomarker, and neuroimaging findings from a prospective, national longitudinal study of cognition in 351 COVID-19 patients who had required hospitalisation, compared to 2,927 normative matched controls.

Cognitive deficits were global and associated with elevated brain injury markers and reduced anterior cingulate cortex volume one year after admission. The severity of the initial infective insult, post-acute psychiatric symptoms, and a history of encephalopathy were associated with greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Treatment with corticosteroids during the acute phase appeared protective against cognitive deficits. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 is immune-mediated, and should guide the development of therapeutic strategies.

Source: Benedict Michael, Greta Wood, Brendan Sargent et al. Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study, 05 January 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3818580/v1] https://www.researchsquare.com/article/rs-3818580/v1 (Full text)

Characterization of neurocognitive deficits in patients with post-COVID-19 syndrome: persistence, patients’ complaints, and clinical predictors.

Abstract:

Introduction: Cognitive symptoms persisting beyond 3 months following COVID-19 present a considerable disease burden. We aimed to establish a domain-specific cognitive profile of post-COVID-19 syndrome (PCS). We examined the deficits’ persistence, relationships with subjective cognitive complaints, and clinical variables, to identify the most relevant cognitive deficits and their predictors.

Methods: This cross-sectional study examined cognitive performance and patient-reported and clinical predictors of cognitive deficits in PCS patients (n = 282) and socio-demographically comparable healthy controls (n = 52).

Results: On the Oxford Cognitive Screen-Plus, the patient group scored significantly lower in delayed verbal memory, attention, and executive functioning than the healthy group. In each affected domain, 10 to 20% of patients performed more than 1.5 SD below the control mean. Delayed memory was particularly affected, with a small effect of hospitalization and age. Attention scores were predicted by hospitalization and fatigue.

Discussion: Thus, PCS is associated with long-term cognitive dysfunction, particularly in delayed memory, attention, and executive functioning. Memory deficits seem to be of particular relevance to patients’ experience of subjective impairment. Hospitalization, fatigue, and age seem to predict cognitive deficits, while time since infection, depression, and pre-existing conditions do not.

Source: Kozik V, Reuken P, Utech I, Gramlich J, Stallmach Z, Demeyere N, Rakers F, Schwab M, Stallmach A, Finke K. Characterization of neurocognitive deficits in patients with post-COVID-19 syndrome: persistence, patients’ complaints, and clinical predictors. Front Psychol. 2023 Oct 17;14:1233144. doi: 10.3389/fpsyg.2023.1233144. PMID: 37915528; PMCID: PMC10616256. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616256/ (Full text)

Cognitive dysfunction in post-COVID-19 condition: Mechanisms, management, and rehabilitation

Abstract:

The long-term effects of COVID-19 on cognitive function have become an area of increasing concern. This paper provides an overview of characteristics, risk factors, possible mechanisms, and management strategies for cognitive dysfunction in post-COVID-19 condition (PCC).

Prolonged cognitive dysfunction is one of the most common impairments in PCC, affecting between 17% and 28% of the individuals more than 12 weeks after the infection and persisting in some cases for several years. Cognitive dysfunctions can be manifested as a wide range of symptoms including memory impairment, attention deficit, executive dysfunction, and reduced processing speed. Risk factors for developing PCC, with or without cognitive impairments, include advanced age, preexisting medical conditions, and the severity of acute illness. The underlying mechanisms remain unclear, but proposed contributors include neuroinflammation, hypoxia, vascular damage, and latent virus reactivation not excluding the possibility of direct viral invasion of the central nervous system, illustrating complex viral pathology.

As the individual variation of the cognitive impairments is large, a neuropsychological examination and a person-centered multidimensional approach are required. According to the World Health Organization, limited evidence on COVID-19-related cognitive impairments necessitates implementing rehabilitation interventions from established practices of similar conditions. Psychoeducation and compensatory skills training are recommended. Assistive products and environmental modifications adapted to individual needs might be helpful. In specific attention- and working memory dysfunctions, cognitive training—carefully monitored for intensity—might be effective for people who do not suffer from post-exertional malaise. Further research is crucial for evidence-based interventions specific to COVID-19-related cognitive impairments.

Source: Möller M, Borg K, Janson C, Lerm M, Normark J, Niward K. Cognitive dysfunction in post-COVID-19 condition: Mechanisms, management, and rehabilitation. J Intern Med. 2023 Sep 27. doi: 10.1111/joim.13720. Epub ahead of print. PMID: 37766515. https://onlinelibrary.wiley.com/doi/10.1111/joim.13720 (Full text)

The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study

Abstract:

Background: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored.

Methods: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds.

Findings: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, β = -0.14 standard deviations, SDs, 95% confidence intervals, CI: -0.21, -0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, β = -0.22 SDs, 95% CI: -0.35, -0.09). Effects were comparable to hospital presentation during illness (N = 281, β = -0.31 SDs, 95% CI: -0.44, -0.18), and 10 years age difference (60-70 years vs. 50-60 years, β = -0.21 SDs, 95% CI: -0.30, -0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection.

Interpretation: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms.

Source: Cheetham NJ, Penfold R, Giunchiglia V, Bowyer V, Sudre CH, Canas LS, Deng J, Murray B, Kerfoot E, Antonelli M, Rjoob K, Molteni E, Österdahl MF, Harvey NR, Trender WR, Malim MH, Doores KJ, Hellyer PJ, Modat M, Hammers A, Ourselin S, Duncan EL, Hampshire A, Steves CJ. The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study. EClinicalMedicine. 2023 Jul 21;62:102086. doi: 10.1016/j.eclinm.2023.102086. PMID: 37654669; PMCID: PMC10466229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466229/ (Full text)

Acute blood biomarker profiles predict cognitive deficits 6 and 12 months after COVID-19 hospitalization

Abstract:

Post-COVID cognitive deficits, including ‘brain fog’, are clinically complex, with both objective and subjective components. They are common and debilitating, and can affect the ability to work, yet their biological underpinnings remain unknown.

In this prospective cohort study of 1,837 adults hospitalized with COVID-19, we identified two distinct biomarker profiles measured during the acute admission, which predict cognitive outcomes 6 and 12 months after COVID-19.

A first profile links elevated fibrinogen relative to C-reactive protein with both objective and subjective cognitive deficits. A second profile links elevated D-dimer relative to C-reactive protein with subjective cognitive deficits and occupational impact. This second profile was mediated by fatigue and shortness of breath. Neither profile was significantly mediated by depression or anxiety.

Results were robust across secondary analyses. They were replicated, and their specificity to COVID-19 tested, in a large-scale electronic health records dataset. These findings provide insights into the heterogeneous biology of post-COVID cognitive deficits.

Source: Taquet, M., Skorniewska, Z., Hampshire, A. et al. Acute blood biomarker profiles predict cognitive deficits 6 and 12 months after COVID-19 hospitalization. Nat Med (2023). https://doi.org/10.1038/s41591-023-02525-y https://www.nature.com/articles/s41591-023-02525-y (Full text)

Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment

Abstract:

Objective: Attention, working memory and executive processing have been reported to be consistently impaired in Neuro-Long coronavirus disease (COVID). On the hypothesis of abnormal cortical excitability, we investigated the functional state of inhibitory and excitatory cortical regulatory circuits by single “paired-pulse” transcranial magnetic stimulation (ppTMS) and Short-latency Afferent Inhibition (SAI).

Methods: We compared clinical and neurophysiological data of 18 Long COVID patients complaining of persistent cognitive impairment with 16 Healthy control (HC) subjects. Cognitive status was evaluated by means of the Montreal Cognitive Assessment (MoCA) and a neuropsychological evaluation of the executive function domain; fatigue was scored by the Fatigue Severity Scale (FSS). Resting motor threshold (RMT), the amplitude of the motor evoked potential (MEP), Short Intra-cortical Inhibition (SICI), Intra-cortical Facilitation (ICF), Long-interval Intracortical Inhibition (LICI) and Short-afferent inhibition (SAI) were investigated over the motor (M1) cortex.

Results: MoCA corrected scores were significantly different between the two groups (p = 0.023). The majority of the patients’ performed sub-optimally in the neuropsychological assessment of the executive functions. The majority (77.80%) of the patients reported high levels of perceived fatigue in the FSS. RMT, MEPs, SICI and SAI were not significantly different between the two groups. On the other hand, Long COVID patients showed a reduced amount of inhibition in LICI (p = 0.003) and a significant reduction in ICF (p < 0.001).

Conclusions: Neuro-Long COVID patients performing sub-optimally in the executive functions showed a reduction of LICI related to GABAb inhibition and a reduction of ICF related to glutamatergic regulation. No alteration in cholinergic circuits was found.

Significance: These findings can help to better understand the neurophysiological characteristics of Neuro-Long COVID, and in particular, motor cortex regulation in people with “brain fog”.

Source: Manganotti P, Michelutti M, Furlanis G, Deodato M, Buoite Stella A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin Neurophysiol. 2023 May 10;151:83-91. doi: 10.1016/j.clinph.2023.04.010. Epub ahead of print. PMID: 37210757; PMCID: PMC10170904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170904/ (Full text)

Perceived Cognitive Deficits in Patients With Symptomatic SARS-CoV-2 and Their Association With Post-COVID-19 Condition

Abstract:

Importance: Neuropsychiatric symptoms are common in acute SARS-CoV-2 infection and in post-COVID-19 condition (PCC; colloquially known as long COVID), but the association between early presenting neuropsychiatric symptoms and PCC is unknown.

Objective: To describe the characteristics of patients with perceived cognitive deficits within the first 4 weeks of SARS-CoV-2 infection and the association of those deficits with PCC symptoms.

Design, setting, and participants: This prospective cohort study was conducted from April 2020 to February 2021, with follow-up of 60 to 90 days. The cohort consisted of adults enrolled in the University of California, Los Angeles, SARS-CoV-2 Ambulatory Program who had a laboratory-confirmed symptomatic SARS-CoV-2 infection and were either hospitalized in a University of California, Los Angeles, hospital or one of 20 local health care facilities, or were outpatients referred by a primary care clinician. Data analysis was performed from March 2022 to February 2023.

Exposure: Laboratory-confirmed SARS-CoV-2 infection.

Main outcomes and measures: Patients responded to surveys that included questions about perceived cognitive deficits modified from the Perceived Deficits Questionnaire, Fifth Edition, (ie, trouble being organized, trouble concentrating, and forgetfulness) and symptoms of PCC at 30, 60, and 90 days after hospital discharge or initial laboratory-confirmed infection of SARS-CoV-2. Perceived cognitive deficits were scored on a scale from 0 to 4. Development of PCC was determined by patient self-report of persistent symptoms 60 or 90 days after initial SARS-CoV-2 infection or hospital discharge.

Results: Of 1296 patients enrolled in the program, 766 (59.1%) (mean [SD] age, 60.0 [16.7] years; 399 men [52.1%]; 317 Hispanic/Latinx patients [41.4%]) completed the perceived cognitive deficit items at 30 days after hospital discharge or outpatient diagnosis. Of the 766 patients, 276 (36.1%) perceived a cognitive deficit, with 164 (21.4%) having a mean score of greater than 0 to 1.5 and 112 patients (14.6 %) having a mean score greater than 1.5. Prior cognitive difficulties (odds ratio [OR], 1.46; 95% CI, 1.16-1.83) and diagnosis of depressive disorder (OR, 1.51; 95% CI, 1.23-1.86) were associated with report of a perceived cognitive deficit. Patients reporting perceived cognitive deficits in the first 4 weeks of SARS-CoV-2 infection were more likely to report symptoms of PCC than those without perceived cognitive deficits (118 of 276 patients [42.8%] vs 105 of 490 patients [21.4%]; χ21, 38.9; P < .001). Adjusting for demographic and clinical factors, perceived cognitive deficits in the first 4 weeks of SARS-CoV-2 were associated with PCC symptoms (patients with a cognitive deficit score of >0 to 1.5: OR, 2.42; 95% CI, 1.62-3.60; patients with cognitive deficit score >1.5: OR, 2.97; 95% CI, 1.86-4.75) compared to patients who reported no perceived cognitive deficits.

Conclusions and relevance: These findings suggest that patient-reported perceived cognitive deficits in the first 4 weeks of SARS-CoV-2 infection are associated with PCC symptoms and that there may be an affective component to PCC in some patients. The underlying reasons for PCC merit additional exploration.

Source: Turner GM, McMullan C, Aiyegbusi OL, Hughes SE, Walker A, Jeyes F, Adler Y, Chong A, Buckland L, Stanton D, Davies EH, Haroon S, Calvert M. Co-production of a feasibility trial of pacing interventions for Long COVID. Res Involv Engagem. 2023 Mar 30;9(1):18. doi: 10.1186/s40900-023-00429-2. PMID: 36997975; PMCID: PMC10061378. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061378/ (Full text)