Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterized by an elusive etiology and pathophysiology. This study aims to evaluate the pathological role of neuroinflammation in ME/CFS by conducting an exhaustive analysis of 65 observational studies.

Four neuroimaging techniques, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), and positron emission tomography (PET), were employed to comparatively assess brain regional structure, metabolite profiles, electrical activity, and glial activity in 1529 ME/CFS patients (277 males, 1252 females) and 1715 controls (469 males, 1246 females). Clinical characteristics, including sex, age, and fatigue severity, were consistent with established epidemiological patterns.

Regional alterations were most frequently identified in the cerebral cortex, with a notable focus on the frontal cortex. However, our meta-analysis data revealed a significant hypoactivity in the insular and thalamic regions, contrary to observed frequencies. These abnormalities, occurring in pivotal network hubs bridging reason and emotion, disrupt connections with the limbic system, contributing to the hallmark symptoms of ME/CFS.

Furthermore, we discuss the regions where neuroinflammatory features are frequently observed and address critical neuroimaging limitations, including issues related to inter-rater reliability. This systematic review serves as a valuable guide for defining regions of interest (ROI) in future neuroimaging investigations of ME/CFS

Source: Lee JS, Sato W, Son CG. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun Rev. 2023 Nov 26:103484. doi: 10.1016/j.autrev.2023.103484. Epub ahead of print. PMID: 38016575. https://www.sciencedirect.com/science/article/pii/S1568997223002185 (Full text)

Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology

Abstract:

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks.

In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression.

Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.

Source:Aguado, J., Amarilla, A.A., Taherian Fard, A. et al. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat Aging (2023). https://doi.org/10.1038/s43587-023-00519-6 https://www.nature.com/articles/s43587-023-00519-6 (Full text)

Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

OBJECTIVES/GOALS: Strong evidence has implicated oxidative stress (OS) as a disease mechanism in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The study aim was to assess whether a C>T single nucleotide polymorphism (SNP) (rs1800668), which reduces the activity of glutathione peroxidase 1 (GPX1), is associated with brain OS in patients with ME/CFS.

METHODS/STUDY POPULATION: Study population: The study enrolled 20 patients with ME/CFS diagnosed according to Canadian Consensus Criteria, and 11 healthy control (HC) subjects. Genotyping: DNA was extracted from whole blood samples, amplified by PCR, and purified. Sanger sequencing was used for genotyping. 1H MRS: Proton magnetic resonance spectroscopy (1H MRS) was used to measure levels of glutathione (GSH) a primary tissue antioxidant and OS marker in a 3x3x2 cm3 occipital cortex (OCC) voxel. GSH spectra were recorded in 15 minutes with the standard J-editing technique. The resulting GSH peak area was normalized to tissue water level in the voxel. Statistical Analysis: T-tests were used to compare OCC GSH levels between ME/CFS and HC groups, and between the study’s genotype groups (group 1: CC, group 2: combined TC and TT).

RESULTS/ANTICIPATED RESULTS: Clinical characteristics: ME/CFS and HC groups were comparable on age and BMI but not on sex (p = 0.038). Genotype frequencies: Genotype frequencies in the ME/CFS group were 0.55 (CC), 0.25 (TC) and 0.2 (TT); and 0.636 (CC), 0.364 (TC), and 0 (TT) in the HC group. GSH levels: There was a trend-level lower mean OCC GSH in ME/CFS than in HC (0.0015 vs 0.0017; p = 0.076). GSH levels by genotype group interaction: Within the ME/CFS group but not in the combined ME/CFS and HC group or HC group alone, GSH levels were lower in the TC and TT genotypes than in CC genotypes (0.00143 vs 0.00164; p = 0.018).

DISCUSSION/SIGNIFICANCE: This study found that the presence of a C>T SNP in GPX1 is associated with lower mean GSH levels and, hence, brain oxidative stress, in ME/CFS patients. If validated in a larger cohort, this finding may support targeted antioxidant therapy based on their genotype as a potentially effective treatment for patients with ME/CFS.

Source: Hampilos, N., Germain, A., Mao, X., Hanson, M., & Shungu, D. (2023). 474 Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical and Translational Science, 7(S1), 137-138. doi:10.1017/cts.2023.488. DOI: https://doi.org/10.1017/cts.2023.488

Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

Abstract:

We measured brain injury markers, inflammatory mediators, and autoantibodies in 203 participants with COVID-19; 111 provided acute sera (1-11 days post admission) and 56 with COVID-19-associated neurological diagnoses provided subacute/convalescent sera (6-76 weeks post-admission).

Compared to 60 controls, brain injury biomarkers (Tau, GFAP, NfL, UCH-L1) were increased in acute sera, significantly more so for NfL and UCH-L1, in patients with altered consciousness. Tau and NfL remained elevated in convalescent sera, particularly following cerebrovascular and neuroinflammatory disorders. Acutely, inflammatory mediators (including IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) were higher in participants with altered consciousness, and correlated with brain injury biomarker levels. Inflammatory mediators were lower than acute levels in convalescent sera, but levels of CCL2, CCL7, IL-1RA, IL-2Rα, M-CSF, SCF, IL-16 and IL-18 in individual participants correlated with Tau levels even at this late time point.

When compared to acute COVID-19 patients with a normal GCS, network analysis showed significantly altered immune responses in patients with acute alteration of consciousness, and in convalescent patients who had suffered an acute neurological complication. The frequency and range of autoantibodies did not associate with neurological disorders. However, autoantibodies against specific antigens were more frequent in patients with altered consciousness in the acute phase (including MYL7, UCH-L1, GRIN3B, and DDR2), and in patients with neurological complications in the convalescent phase (including MYL7, GNRHR, and HLA antigens).

In a novel low-inoculum mouse model of SARS-CoV-2, while viral replication was only consistently seen in mouse lungs, inflammatory responses were seen in both brain and lungs, with significant increases in CCL4, IFNγ, IL-17A, and microglial reactivity in the brain. Neurological injury is common in the acute phase and persists late after COVID-19, and may be driven by a para-infectious process involving a dysregulated host response.

Source: Benedict D. Michael, Cordelia Dunai, Edward J. Needham, Kukatharmini Tharmaratnam, Robyn Williams, Yun Huang, Sarah A. Boardman, Jordan Clark, Parul Sharma, Krishanthi Subramaniam, Greta K. Wood, Ceryce Collie, Richard Digby, Alexander Ren, Emma Norton, Maya Leibowitz, Soraya Ebrahimi, Andrew Fower, Hannah Fox, Esteban Tato, Mark Ellul, Geraint Sunderland, Marie Held, Claire Hetherington, Franklyn Nkongho, Alish Palmos, Alexander Grundmann, James P. Stewart, Michael Griffiths, Tom Solomon, Gerome Breen, Alasdair Coles, Jonathan Cavanagh, Sarosh R. Irani, Angela Vincent, Leonie Taams, David K. Menon. Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses. medRxiv 2023.04.03.23287902; doi: https://doi.org/10.1101/2023.04.03.23287902 (Full text available as PDF file)

Tunneling nanotubes provide a route for SARS-CoV-2 spreading

Abstract:

Neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection represent a major issue in long coronavirus disease. How SARS-CoV-2 gains access to the brain and how infection leads to neurological symptoms are not clear because the principal means of viral entry by endocytosis, the angiotensin-converting enzyme 2 receptor, are barely detectable in the brain.

We report that human neuronal cells, nonpermissive to infection through the endocytic pathway, can be infected when cocultured with permissive infected epithelial cells. SARS-CoV-2 induces the formation of tunneling nanotubes (TNTs) and exploits this route to spread to uninfected cells. In cellulo correlative fluorescence and cryo-electron tomography reveal that SARS-CoV-2 is associated with TNTs between permissive cells. Furthermore, multiple vesicular structures such as double-membrane vesicles, sites of viral replication, are observed inside TNTs between permissive and nonpermissive cells.

Our data highlight a previously unknown mechanism of SARS-CoV-2 spreading, likely used as a route to invade nonpermissive cells and potentiate infection in permissive cells.

Source: Pepe A, Pietropaoli S, Vos M, Barba-Spaeth G, Zurzolo C. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Sci Adv. 2022 Jul 22;8(29):eabo0171. doi: 10.1126/sciadv.abo0171. Epub 2022 Jul 20. PMID: 35857849; PMCID: PMC9299553.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299553/ (Full text)

Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterised by fatigue and post-exertional malaise. Its pathogenesis is poorly understood. GDF15 is a circulating protein secreted by cells in response to a variety of stressors. The receptor for GDF15 is expressed in the brain, where its activation results in a range of responses. Among the conditions in which circulating GDF15 levels are highly elevated are mitochondrial disorders, where early skeletal muscle fatigue is a key symptom. We hypothesised that GDF15 may represent a marker of cellular stress in ME/CFS.

METHODS: GDF15 was measured in serum from patients with ME/CFS (n = 150; 100 with mild/moderate and 50 with severe symptoms), “healthy volunteers” (n = 150) and a cohort of patients with multiple sclerosis (n = 50).

RESULTS: Circulating GDF15 remained stable in a subset of ME/CFS patients when sampled on two occasions ~ 7 months (IQR 6.7-8.8) apart, 720 pg/ml (95% CI 625-816) vs 670 pg/ml (95% CI 598-796), P = 0.5. GDF15 levels were 491 pg/ml in controls (95% CI 429-553), 546 pg/ml (95% CI 478-614) in MS patients, 560 pg/ml (95% CI 502-617) in mild/moderate ME/CFS patients and 602 pg/ml (95% CI 531-674) in severely affected ME/CFS patients. Accounting for potential confounders, severely affected ME/CFS patients had GDF15 concentrations that were significantly increased compared to healthy controls (P = 0.01). GDF15 levels were positively correlated (P = 0.026) with fatigue scores in ME/CFS.

CONCLUSIONS: Severe ME/CFS is associated with increased levels of GDF15, a circulating biomarker of cellular stress that appears which stable over several months.

Source: Melvin A, Lacerda E, Dockrell HM, O’Rahilly S, Nacul L. Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med. 2019 Dec 4;17(1):409. doi: 10.1186/s12967-019-02153-6. https://www.ncbi.nlm.nih.gov/pubmed/31801546

Neural Consequences of Post-Exertion Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Post exertion malaise is one of the most debilitating aspects of Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome, yet the neurobiological consequences are largely unexplored. The objective of the study was to determine the neural consequences of acute exercise using functional brain imaging.

Fifteen female Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients and 15 healthy female controls completed 30 minutes of submaximal exercise (70% of peak heart rate) on a cycle ergometer. Symptom assessments (e.g. fatigue, pain, mood) and brain imaging data were collected one week prior to and 24 hours following exercise.

Functional brain images were obtained during performance of: 1) a fatiguing cognitive task – the Paced Auditory Serial Addition Task, 2) a non-fatiguing cognitive task – simple number recognition, and 3) a non-fatiguing motor task – finger tapping. Symptom and exercise data were analyzed using independent samples t-tests. Cognitive performance data were analyzed using mixed-model analysis of variance with repeated measures. Brain responses to fatiguing and non-fatiguing tasks were analyzed using linear mixed effects with cluster-wise (101-voxels) alpha of 0.05.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients reported large symptom changes compared to controls (effect size ≥0.8, p<0.05). Patients and controls had similar physiological responses to exercise (p>0.05). However, patients exercised at significantly lower Watts and reported greater exertion and leg muscle pain (p<0.05).

For cognitive performance, a significant Group by Time interaction (p<0.05), demonstrated pre- to post-exercise improvements for controls and worsening for patients. Brain responses to finger tapping did not differ between groups at either time point. During number recognition, controls exhibited greater brain activity (p<0.05) in the posterior cingulate cortex, but only for the pre-exercise scan. For the Paced Serial Auditory Addition Task, there was a significant Group by Time interaction (p<0.05) with patients exhibiting increased brain activity from pre- to post-exercise compared to controls bilaterally for inferior and superior parietal and cingulate cortices.

Changes in brain activity were significantly related to symptoms for patients (p<0.05). Acute exercise exacerbated symptoms, impaired cognitive performance and affected brain function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients.

These converging results, linking symptom exacerbation with brain function, provide objective evidence of the detrimental neurophysiological effects of post-exertion malaise.

Published by Elsevier Inc.

 

Source: Cook DB, Light AR, Light KC, Broderick G, Shields MR, Dougherty RJ, Meyer JD, VanRiper S, Stegner AJ, Ellingson LD, Vernon SD. Neural Consequences of Post-Exertion Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Behav Immun. 2017 Feb 16. pii: S0889-1591(17)30051-X. doi: 10.1016/j.bbi.2017.02.009. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/28216087

 

Prefrontal Structure Varies as a Function of Pain Symptoms in Chronic Fatigue Syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is characterized by severe fatigue persisting for ≥6 months and leading to considerable impairment in daily functioning. Neuroimaging studies of patients with CFS have revealed alterations in prefrontal brain morphology. However, it remains to be determined whether these alterations are specific for fatigue or whether they relate to other common CFS symptoms (e.g., chronic pain, lower psychomotor speed, and reduced physical activity).

METHODS: We used magnetic resonance imaging to quantify gray matter volume (GMV) and the N-acetylaspartate and N-acetylaspartylglutamate/creatine ratio (NAA/Cr) in a group of 89 women with CFS. Building on previous reports, we tested whether GMV and NAA/Cr in the dorsolateral prefrontal cortex are associated with fatigue severity, pain, psychomotor speed, and physical activity, while controlling for depressive symptoms. We also considered GMV and NAA/Cr differences between patients with CFS and 26 sex-, age-, and education-matched healthy controls.

RESULTS: The presence of pain symptoms was the main predictor of both GMV and NAA/Cr in the left dorsolateral prefrontal cortex of patients with CFS. More pain was associated with reduced GMVs and NAA/Cr, over and above the effects of fatigue, depressive symptoms, physical activity, and psychomotor speed. In contrast to previous reports and despite a large representative sample, global GMV did not differ between the CFS and healthy control groups.

CONCLUSIONS: CFS, as diagnosed by Centers for Disease Control and Prevention criteria, is not a clinical entity reliably associated with reduced GMV. Individual variation in the presence of pain, rather than fatigue, is associated with neuronal alterations in the dorsolateral prefrontal cortex of patients with CFS.

Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

 

Source: van der Schaaf ME, De Lange FP, Schmits IC, Geurts DE, Roelofs K, van der Meer JW, Toni I, Knoop H. Prefrontal Structure Varies as a Function of Pain Symptoms in Chronic Fatigue Syndrome. Biol Psychiatry. 2017 Feb 15;81(4):358-365. doi: 10.1016/j.biopsych.2016.07.016. Epub 2016 Aug 31. https://www.ncbi.nlm.nih.gov/pubmed/27817843

 

Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome

Abstract:

Motivational signals influence a wide variety of cognitive processes and components of behavioral performance. Cognitive dysfunction in patients with childhood chronic fatigue syndrome (CCFS) may be closely associated with a low motivation to learn induced by impaired neural reward processing. However, the extent to which reward processing is impaired in CCFS patients is unclear.

The aim of the present functional magnetic resonance imaging (fMRI) study was to determine whether brain activity in regions related to reward sensitivity is impaired in CCFS patients. fMRI data were collected from 13 CCFS patients (mean age, 13.6 ± 1.0 years) and 13 healthy children and adolescents (HCA) (mean age, 13.7 ± 1.3 years) performing a monetary reward task. Neural activity in high- and low-monetary-reward conditions was compared between CCFS and HCA groups. Severity of fatigue and the reward obtained from learning in daily life were evaluated by questionnaires.

Activity of the putamen was lower in the CCFS group than in the HCA group in the low-reward condition, but not in the high-reward condition. Activity of the putamen in the low-reward condition in CCFS patients was negatively and positively correlated with severity of fatigue and the reward from learning in daily life, respectively.

We previously revealed that motivation to learn was correlated with striatal activity, particularly the neural activity in the putamen. This suggests that in CCFS patients low putamen activity, associated with altered dopaminergic function, decreases reward sensitivity and lowers motivation to learn.

 

Source: Mizuno K, Kawatani J, Tajima K, Sasaki AT, Yoneda T, Komi M, Hirai T, Tomoda A, Joudoi T, Watanabe Y. Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome. Neuroimage Clin. 2016 Sep 26;12:600-606. eCollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043413/ (Full article)

 

Static and dynamic functional connectivity in patients with chronic fatigue syndrome: use of arterial spin labelling fMRI

Abstract:

Studies using arterial spin labelling (ASL) have shown that individuals with chronic fatigue syndrome (CFS) have decreased regional cerebral blood flow, which may be associated with changes in functional neural networks.

Indeed, recent studies indicate disruptions in functional connectivity (FC) at rest in chronically fatigued patients including perturbations in static FC (sFC), that is average FC at rest between several brain regions subserving neurocognitive, motor and affect-related networks.

Whereas sFC often provides information of functional network reorganization in chronic illnesses, investigations of temporal changes in functional connectivity between multiple brain areas may shed light on the dynamic characteristics of brain network activation associated with such maladies.

We used ASL fMRI in 19 patients with CFS and 15 healthy controls (HC) to examine both static and dynamic changes in FC among several a priori selected brain regions during a fatiguing cognitive task. HC showed greater increases than CFS in static FC (sFC) between insula and temporo-occipital structures and between precuneus and thalamus/striatum.

Furthermore, inferior frontal gyrus connectivity to cerebellum, occipital and temporal structures declined in HC but increased in CFS. Patients also showed lower dynamic FC (dFC) between hippocampus and right superior parietal lobule. Both sFC and dFC correlated with task-related fatigue increases.

These data provide the first evidence that perturbations in static and dynamic FC may underlie chronically fatigued patients’ report of task-induced fatigue. Further research will determine whether such changes in sFC and dFC are also characteristic for other fatigued individuals, including patients with chronic pain, cancer and multiple sclerosis.

© 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

 

Source: Boissoneault J, Letzen J, Lai S, Robinson ME, Staud R. Static and dynamic functional connectivity in patients with chronic fatigue syndrome: use of arterial spin labelling fMRI. Clin Physiol Funct Imaging. 2016 Sep 28. doi: 10.1111/cpf.12393. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/27678090