Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterized by an elusive etiology and pathophysiology. This study aims to evaluate the pathological role of neuroinflammation in ME/CFS by conducting an exhaustive analysis of 65 observational studies.

Four neuroimaging techniques, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), and positron emission tomography (PET), were employed to comparatively assess brain regional structure, metabolite profiles, electrical activity, and glial activity in 1529 ME/CFS patients (277 males, 1252 females) and 1715 controls (469 males, 1246 females). Clinical characteristics, including sex, age, and fatigue severity, were consistent with established epidemiological patterns.

Regional alterations were most frequently identified in the cerebral cortex, with a notable focus on the frontal cortex. However, our meta-analysis data revealed a significant hypoactivity in the insular and thalamic regions, contrary to observed frequencies. These abnormalities, occurring in pivotal network hubs bridging reason and emotion, disrupt connections with the limbic system, contributing to the hallmark symptoms of ME/CFS.

Furthermore, we discuss the regions where neuroinflammatory features are frequently observed and address critical neuroimaging limitations, including issues related to inter-rater reliability. This systematic review serves as a valuable guide for defining regions of interest (ROI) in future neuroimaging investigations of ME/CFS

Source: Lee JS, Sato W, Son CG. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun Rev. 2023 Nov 26:103484. doi: 10.1016/j.autrev.2023.103484. Epub ahead of print. PMID: 38016575. https://www.sciencedirect.com/science/article/pii/S1568997223002185 (Full text)

Detection of intracranial abnormalities in patients with chronic fatigue syndrome: comparison of MR imaging and SPECT

Abstract:

OBJECTIVE: Chronic fatigue syndrome is a recently characterized condition of unknown origin that is manifested by fatigue, flulike complaints, and neurologic signs and symptoms, including persistent headache, impaired cognitive abilities, mood disorders, and sensorimotor disturbances. This syndrome can be difficult to diagnose clinically or by standard neuroradiologic tests. We performed MR imaging and single-photon emission computed tomography (SPECT) in patients with chronic fatigue syndrome to compare the usefulness of functional and anatomic imaging in the detection of intracranial abnormalities.

SUBJECTS AND METHODS: Sixteen patients who fulfilled the Centers for Disease Control, British, and/or Australian criteria for chronic fatigue syndrome had MR and SPECT examinations within a 10-week period. Axial MR and SPECT scans were analyzed as to the number and location of focal abnormalities by using analysis of variance with the Student-Newman-Keuls option. MR imaging findings in patients with chronic fatigue syndrome were compared with those in 15 age-matched control subjects, and SPECT findings in the patients with chronic fatigue syndrome were compared with those in 14 age-matched control subjects by using Fisher’s exact test. The findings on MR and SPECT scans in the same patients were compared by using the Wilcoxon matched-pairs signed-ranks test.

RESULTS: MR abnormalities consisted of foci of T2-bright signal in the periventricular and subcortical white matter and in the centrum semiovale; there were 2.06 foci per patient, vs 0.80 foci per control subject. MR abnormalities were present in eight (50%) of 16 patients, compared with three (20%) of 15 age-matched control subjects. Neither of these differences reached significance, although the power of the study to detect differences between groups was small. Patients with chronic fatigue syndrome had significantly more defects throughout the cerebral cortex on SPECT scans than did normal subjects (7.31 vs 0.43 defects per subject, p < .001). SPECT abnormalities were present in 13 (81%) of 16 patients, vs three (21%) of 14 control subjects (p < .01). SPECT scans showed significantly more abnormalities than did MR scans in patients with chronic fatigue syndrome (p < .025). In the few patients who had repeat SPECT and MR studies, the number of SPECT abnormalities appeared to correlate with clinical status, whereas MR changes were irreversible.

CONCLUSION: SPECT abnormalities occur more frequently and in greater numbers than MR abnormalities do in patients with chronic fatigue syndrome. SPECT may prove to be useful in following the clinical progress of patients with this syndrome.

 

Source: Schwartz RB, Garada BM, Komaroff AL, Tice HM, Gleit M, Jolesz FA, Holman BL. Detection of intracranial abnormalities in patients with chronic fatigue syndrome: comparison of MR imaging and SPECT. AJR Am J Roentgenol. 1994 Apr;162(4):935-41. http://www.ncbi.nlm.nih.gov/pubmed/8141020