The majority of severe COVID-19 patients develop anti-cardiac autoantibodies

Abstract:

Severe cases of COVID-19 are characterized by an inflammatory burst, which is accompanied by multiorgan failure. The elderly population has higher risk for severe or fatal outcome for COVID-19. Inflammatory mediators facilitate the immune system to combat viral infection by producing antibodies against viral antigens. Several studies reported that the pro-inflammatory state and tissue damage in COVID-19 also promotes autoimmunity by autoantibody generation. We hypothesized that a subset of these autoantibodies targets cardiac antigens.

Here we aimed to detect anti-cardiac autoantibodies in severe COVID-19 patients during hospitalization. For this purpose, 104 COVID-19 patients were recruited, while 40 heart failure patients with dilated cardiomyopathy and 20 patients with severe aortic stenosis served as controls. Patients were tested for anti-cardiac autoantibodies, using human heart homogenate as a bait. Follow-up samples were available in 29 COVID-19 patients. Anti-cardiac autoantibodies were detected in 68% (71 out of 104) of severe COVID-19 patients.

Overall, 39% of COVID-19 patients had anti-cardiac IgG autoantibodies, while 51% had anti-cardiac autoantibodies of IgM isotype. Both IgG and IgM anti-cardiac autoantibodies were observed in 22% of cases, and multiple cardiac antigens were targeted in 38% of COVID-19 patients. These anti-cardiac autoantibodies targeted a diverse set of myocardial proteins, without apparent selectivity. As controls, heart failure patients (with dilated cardiomyopathy) had similar occurrence of IgG (45%, p = 0.57) autoantibodies, while significantly lower occurrence of IgM autoantibodies (30%, p = 0.03). Patients with advanced aortic stenosis had significantly lower number of both IgG (11%, p = 0.03) and IgM (10%, p < 0.01) type anti-cardiac autoantibodies than that in COVID-19 patients. Furthermore, we detected changes in the anti-cardiac autoantibody profile in 7 COVID-19 patients during hospital treatment.

Surprisingly, the presence of these anti-cardiac autoantibodies did not affect the clinical outcome and the prevalence of the autoantibodies did not differ between the elderly (over 65 years) and the patients younger than 65 years of age. Our results demonstrate that the majority of hospitalized COVID-19 patients produce novel anti-cardiac IgM autoantibodies. COVID-19 also reactivates resident IgG autoantibodies. These autoantibodies may promote autoimmune reactions, which can complicate post-COVID recuperation, contributing to post-acute sequelae of COVID-19 (long COVID).

Source: Fagyas M, Nagy B Jr, Ráduly AP, Mányiné IS, Mártha L, Erdősi G, Sipka S Jr, Enyedi E, Szabó AÁ, Pólik Z, Kappelmayer J, Papp Z, Borbély A, Szabó T, Balla J, Balla G, Bai P, Bácsi A, Tóth A. The majority of severe COVID-19 patients develop anti-cardiac autoantibodies. Geroscience. 2022 Sep 16:1–14. doi: 10.1007/s11357-022-00649-6. Epub ahead of print. PMID: 36112333; PMCID: PMC9483490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483490/ (Full text)

Post COVID syndrome: A novel challenge and threat to international health

Abstract:

The global pandemic caused by the SARS-CoV-2 virus has affected every continent worldwide. The novelty of this virus, its mutations and the rapid speed and unprecedented rate at which it has torn through the global community has in turn lead to an innate lack of knowledge and information about the actual disease caused and the severity of the complications associated with COVID-19.

The SARS-CoV-2 virus has been infecting individuals since 2019 and now as of 2022 has been circulating for just over 2 years within the global populous. As the number of cases have risen globally over this period (some of which having contracted the virus twice) further endeavours have been undertaken to better understand the pathogenesis and natural progression of the disease. A condition reported in some cases with extended bouts of sickness or symptoms following the initial infection with COVID was labelled “long COVID” towards the earlier phases of the pandemic (in the spring of 2020), but has only recently gained the global media and medical attention due to its affliction of more individuals on a global basis and has thus warranted further investigation.

Long COVID is described as a persistent, long-term state of poor health following an infection with COVID-19. The effect of Long COVID is multisystemic in nature with a wide array of signs and symptoms. The most commonly reported clinical features of long COVID are: headaches, myalgia, chest pain, rashes, abdominal pain, shortness of breath, palpitations, anosmia, persistent cough, brain fogs, forgetfulness, depression, insomnia, fatigue and anxiety. This research aims to explore the symptomatology, pathophysiology as well as the treatment and prevention of Long COVID.

Source: Banerjee I, Robinson J, Leclézio A, Sathian B, Banerjee I. Post COVID syndrome: A novel challenge and threat to international health. Nepal J Epidemiol. 2022 Jun 30;12(2):1215-1219. doi: 10.3126/nje.v12i2.46149. PMID: 35974973; PMCID: PMC9374107.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374107/ (Full text)

Autoimmune Gene Expression Proling of Fingerstick Whole Blood in Chronic Fatigue Syndrome

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating condition that can lead to severe impairment of physical, psychological, cognitive, social, and occupational functions.

The cause of ME/CFS remains incompletely understood. There is no clinical diagnostic test for ME/CFS. Although many therapies have been used off-label to manage symptoms of ME/CFS, there are limited, if any, specific therapies or cure for ME/CFS.

In this study, we investigated the expression of genes specific to key immune functions, and viral infection status in ME/CFS patients with an aim of identifying biomarkers for characterization and/or treatment of the disease.

Methods: In 2021, one-hundred and sixty-six (166) patients diagnosed with ME/CFS and 83 healthy controls in the US participated in this study via a social media-based application (app). The patients and heathy volunteers consented to the study and provided self-collected finger-stick blood and first morning void urine samples from home.

RNA from the fingerstick blood was tested using DxTerity’s 51-gene autoimmune RNA expression panel (AIP). In addition, DNA from the same fingerstick blood sample was extracted to detect viral load of 4 known ME/CFS associated viruses (HHV6, HHV7, CMV and EBV) using a real-time PCR method.

Results: Among the 166 ME/CFS participants in the study, approximately half (49%) of the ME/CFS patients reported being house-bound or bedridden due to severe symptoms of the disease.

From the AIP testing, ME/CFS patients with severe, bedridden conditions displayed significant increases in gene expression of IKZF2, IKZF3, HSPA8, BACH2, ABCE1 and CD3D, as compared to 2 patients with mild to moderate disease conditions.

These six aforementioned genes were further upregulated in the 22 bedridden participants who suffer not only from ME/CFS but also from other autoimmune diseases.

These genes are involved in T cell, B cell and autoimmunity functions. Furthermore, IKZF3 (Aiolos) and IKZF2 (Helios), and BACH2 have been implicated in other autoimmune diseases such as systemic lupus erythematosus (SLE) and Rheumatoid Arthritis (RA).

Among the 240 participants tested with the viral assays, 9 samples showed positive results (including 1 EBV positive and 8 HHV6 positives).

Conclusions: Our study indicates that gene expression biomarkers may be used in identifying or differentiating subsets of ME/CFS patients having different levels of disease severity.

These gene targets may also represent opportunities for new therapeutic modalities for the treatment of ME/CFS. The use of social media engaged patient recruitment and at-home sample collection represents a novel approach for conducting clinical research which saves cost, time and eliminates travel for office visits.

Source: Zheng Wang, Michelle F. Waldman, Tara J. Basavanhally, Aviva R. Jacobs, et al. Autoimmune Gene Expression Proling of Fingerstick Whole Blood in Chronic Fatigue Syndrome. https://doi.org/10.21203/rs.3.rs-1942047/v1  (Full text)

Autoimmune Autonomic Dysfunction Syndromes: Potential Involvement and Pathophysiology Related to Complex Regional Pain Syndrome, Fibromyalgia, Chronic Fatigue Syndrome, Silicone Breast Implant-Related Symptoms and Post-COVID Syndrome

Abstract:

The pathophysiological mechanisms involved in chronic disorders such as complex regional pain syndrome, fibromyalgia, chronic fatigue syndrome, silicone breast implant-related symptoms, and post-COVID syndrome have not been clearly defined. The course of the pain in some of the syndromes, the absence of evident tissue damage, and the predominance of alterations in the autonomic nervous system are shared similarities between them.

The production of autoantibodies following a trigger in the syndromes was previously described, for instance, trauma in complex regional pain syndrome, infectious agents in fibromyalgia, chronic fatigue syndrome, and post-COVID syndrome, and the immune stimulation by silicone in women with breast implants. In fact, the autoantibodies produced were shown to be directed against the autonomic nervous system receptors, leading to the amplification of the perception of pain alongside various clinical symptoms seen during the clinical course of the syndromes. Therefore, we viewed autoantibodies targeting the autonomic nervous system resulting in autonomic dysfunction as likely the most comprehensive explanation of the pathophysiology of the disorders mentioned.

Based on this, we aimed to introduce a new concept uniting complex regional pain syndrome, fibromyalgia, chronic fatigue syndrome, silicone breast implant-related symptoms, and post-COVID syndrome, namely “autoimmune autonomic dysfunction syndromes”. Due to its etiological, pathophysiological, and clinical implications, the suggested term would be more precise in classifying the syndromes under one title. The new title would doubtlessly facilitate both laboratory and clinical studies aimed to improve diagnosis and make treatment options more directed and precise.

Source: Mahroum N, Shoenfeld Y. Autoimmune Autonomic Dysfunction Syndromes: Potential Involvement and Pathophysiology Related to Complex Regional Pain Syndrome, Fibromyalgia, Chronic Fatigue Syndrome, Silicone Breast Implant-Related Symptoms and Post-COVID Syndrome. Pathophysiology. 2022 Jul 28;29(3):414-425. doi: 10.3390/pathophysiology29030033. PMID: 35997389. https://www.mdpi.com/1873-149X/29/3/33/htm (Full text)

COVID-19 May Be a Trigger for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

ALBANY, N.Y. (July 25, 2022) – UAlbany researcher Roxana Moslehi from the Department of Epidemiology and Biostatistics is conducting important investigations on myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) to better understand the illness, including its potential connection to cancer, auto-immune disease, and long-haul COVID-19.

According to the CDC, 1 in thirteen adults in the U.S. have COVID-19 symptoms lasting three or more months after contracting the virus—a condition often referred to as “long COVID.” However, research suggests that long COVID is complex, and in some instances may not be COVID-19 at all, but rather ME/CFS—triggered by COVID-19.

ME/CFS is a complex disabling disorder with no known treatment. Between 25 and 50 percent of those with the illness are bed or housebound for extended periods of time, with overwhelming fatigue that does not diminish after resting and difficulty performing daily tasks. Prior to the COVID-19 pandemic, it was estimated that up to 3.4 million people in the US suffered from the illness—the range is large due to the difficulty in diagnosing the disease as it is often dismissed or assumed to be another disorder.

Since ME/CFS is believed to be triggered by the onset of an infectious illness, research suggests that COVID-19 may be a trigger for ME/CFS. The chronic long-haul COVID-19 symptoms that some people report as following the resolution of their acute illness have similarities to symptoms of ME/CFS, such as persistent fatigue, sleep dysfunction, cognitive impairment, impaired memory, and more.

“It is estimated that in the wake of the COVID-19 pandemic, more than 10 million new ME/CFS cases may be triggered around the world,” Moslehi explains. “This makes it urgent to identify risk factors and underlying biologic mechanisms for this condition along with its potential connection to COVID-19.”

Moslehi conducted a molecular epidemiologic investigation of ME/CFS (funded by an NIH research grant awarded to her) to better understand the illness, providing the most compelling evidence to date that ME/CFS may be an auto-immune disorder. She compared people who developed ME/CFS after having an infectious illness with a group of individuals without ME/CFS (called the control group). She looked at various intrinsic factors related to the participants’ health, such as personal history of allergy and asthma, and extrinsic or environmental factors such as exposure to contaminants. She also assessed the prevalence of illnesses such as auto-immune diseases and cancer in their families, levels of serum immune system markers such as cytokines, and molecular evidence of viral reactivation such as mono flare-ups.

The study, published in the proceedings of the American Society of Human Genetics (ASHG), the International Genetic Epidemiology Society (IGES) and the American Association for Cancer Research (AACR), found that those with ME/CFS were five times more likely to have a family history of auto-immune diseases than the control group. ME/CFS was also associated with an increased risk of early-onset cancer (diagnosed before 60 years old) among the first-degree relatives. ME/CFS was associated with certain risk factors such as a history of allergies requiring medication and exposure to contaminants. The analysis by the Moslehi lab also identified a panel of cytokines that predict the risk of ME/CFS with high accuracy. A couple of the identified cytokines are involved in inflammatory processes and have been linked to other auto-immune diseases.

“Our multidimensional analysis of pedigree, epidemiologic, and molecular data not only provides the most objective evidence to date that ME/CFS may be an auto-immune disease— it provides etiologic clues and leads for prevention” says Moslehi. “In addition, our results may enable defining a subset of COVID-19 patients, who are at risk of developing long COVID or ME/CFS, for targeted monitoring and/or therapy.”

More recently, Moslehi, in collaboration with her colleagues at the NIH, obtained two additional NIH (intramural) grants to continue her research on ME/CFS. Through these grants, the DNA and RNA of ME/CFS cases and controls have been sequenced and will be analyzed to identify genes and genetic variations that are associated with ME/CFS.

“The ultimate goal is to conduct an integrative analysis of multi-omics (genomics, proteomics, transcriptomics) data to gain deeper insight into the biologic mechanisms of ME/CFS and identify druggable targets for ME/CFS therapy,” she says.

 

Chronic Fatigue Exhibits Heterogeneous Autoimmunity Characteristics Which Reflect Etiology

Abstract:

Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is considered to be associated with post-viral complications and mental stress, but the role of autoimmunity also remains promising. A comparison of autoimmune profiles in chronic fatigue of different origin may bring insights on the pathogenesis of this disease.

Thirty-three patients with CFS/ME were divided into three subgroups. The first group included Herpesviridae carriers (group V), the second group included stress-related causes of chronic fatigue (distress, group D), and the third group included idiopathic CFS/ME (group I). Were evaluated thirty-six neural and visceral autoantigens with the ELISA ELI-test (Biomarker, Russia) and compared to 20 healthy donors, either without any fatigue (group H), or “healthy but tired” (group HTd) with episodes of fatigue related to job burnout not fitting the CFS/ME criteria.

β2-glycoprotein-I autoantibodies were increased in CFS/ME patients, but not in healthy participants, that alludes the link between CFS/ME and antiphospholipid syndrome (APS) earlier suspected by Berg et al. (1999). In CFS/ME patients, an increase in levels of autoantibodies towards the non-specific components of tissue debris (double-stranded DNA, collagen) was shown. Both CFS and HTd subgroups had elevated level of autoantibodies against serotonin receptors, glial fibrillary acidic protein and protein S100. Only group V showed an elevation in the autoantibodies towards voltage-gated calcium channels, and only group D had elevated levels of dopamine-, glutamate- and GABA-receptor autoantibodies, as well as NF200-protein autoantibodies.

Therefore, increased autoimmune reactions to the multiple neural antigens and to adrenal medullar antigen, but not to other tissue-specific somatic ones were revealed. An increase in autoantibody levels towards some neural and non-tissue-specific antigens strongly correlated with a CFS/ME diagnosis. Autoimmune reactions were described in all subtypes of the clinically significant chronic fatigue. Visceral complaints in CFS/ME patients may be secondary to the neuroendocrine involvement and autoimmune dysautonomia. CFS may be closely interrelated with antiphospholipid syndrome, that requires further study.

Source: Danilenko OV, Gavrilova NY, Churilov LP. Chronic Fatigue Exhibits Heterogeneous Autoimmunity Characteristics Which Reflect Etiology. Pathophysiology. 2022 May 25;29(2):187-199. doi: 10.3390/pathophysiology29020016. PMID: 35736644.  https://www.mdpi.com/1873-149X/29/2/16/htm (Full text)

Is post-COVID syndrome an autoimmune disease?

Abstract:

Introduction: Post-COVID syndrome (PCS) is recognized as a new entity in the context of SARS-CoV-2 infection. Though its pathogenesis is not completely understood, persistent inflammation from acute illness and the development of autoimmunity play a critical role in its development.

Areas covered: The mechanisms involved in the emergence of PCS, their similarities with post-viral and post-care syndromes, its inclusion in the spectrum of autoimmunity and possible targets for its treatment.

Expert opinion: An autoimmune phenomenon plays a major role in most causative theories explaining PCS. There is a need for both PCS definition and classification criteria (including severity scores). Longitudinal and controlled studies are necessary to better understand this new entity, and to find what additional factors participate into its development. With the high prevalence of COVID-19 cases worldwide, together with the current evidence on latent autoimmunity in PCS, we may observe an increase of autoimmune diseases (ADs) in the coming years. Vaccination’s effect on the development of PCS and ADs will also receive attention in the future. Health and social care services need to develop a new framework to deal with PCS.

Source: Anaya JM, Herrán M, Beltrán S, Rojas M. Is post-COVID syndrome an autoimmune disease? Expert Rev Clin Immunol. 2022 Jun 14:1-14. doi: 10.1080/1744666X.2022.2085561. Epub ahead of print. PMID: 35658801. https://pubmed.ncbi.nlm.nih.gov/35658801/

Chronic Fatigue Exhibits heterogeneous autoimmunity characteristics which reflect etiology

Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is considered to be associated with post-viral complications and mental stress, but the role of autoimmunity also remains promising. A comparison of autoimmune profiles in chronic fatigue of different origin may bring insights on the pathogenesis of this disease.
Thirty-three patients with CFS/ME were divided into three subgroups. The first group included Herpesviridae carriers (group V), the second group included stress-related causes of chronic fatigue (distress, group D), and the third group included idiopathic CFS/ME (group I). Were evaluated thirty-six neural and visceral autoantigens with the ELISA ELI-test (Biomarker, Russia) and compared to 20 healthy donors, either without any fatigue (group H), or “healthy but tired” (group HTd) with episodes of fatigue related to job burnout not fitting the CFS/ME criteria. β2-glycoprotein-I autoantibodies were increased in CFS/ME patients, but not in healthy participants, that alludes the link between CFS/ME and antiphospholipid syndrome (APS) earlier suspected by Berg et al. (1999).
In CFS/ME patients, an increase in levels of autoantibodies towards the non-specific components of tissue debris (double-stranded DNA, collagen) was shown. Both CFS and HTd subgroups had elevated level of autoantibodies against serotonin receptors, glial fibrillary acidic protein and protein S100. Only group V showed an elevation in the autoantibodies towards voltage-gated calcium channels, and only group D had elevated levels of dopamine-, glutamate- and GABA-receptor autoantibodies, as well as NF200-protein autoantibodies. Therefore, increased autoimmune reactions to the multiple neural antigens and to adrenal medullar antigen, but not to other tissue-specific somatic ones were revealed.
An increase in autoantibody levels towards some neural and non-tissue-specific antigens strongly correlated with a CFS/ME diagnosis. Autoimmune reactions were described in all subtypes of the clinically significant chronic fatigue. Visceral complaints in CFS/ME patients may be secondary to the neuroendocrine involvement and autoimmune dysautonomia. CFS may be closely interrelated with antiphospholipid syndrome, that requires further study.
Source: Danilenko OV, Gavrilova NY, Churilov LP. Chronic Fatigue Exhibits Heterogeneous Autoimmunity Characteristics Which Reflect Etiology. Pathophysiology. 2022; 29(2):187-199. https://doi.org/10.3390/pathophysiology29020016 https://www.mdpi.com/1873-149X/29/2/16/htm (Full text)

Autoimmunity is a hallmark of post-COVID syndrome

Abstract:

Autoimmunity has emerged as a characteristic of the post-COVID syndrome (PCS), which may be related to sex. In order to further investigate the relationship between SARS-CoV-2 and autoimmunity in PCS, a clinical and serological assessment on 100 patients was done. Serum antibody profiles against self-antigens and infectious agents were evaluated by an antigen array chip for 116 IgG and 104 IgM antibodies.

Thirty pre-pandemic healthy individuals were included as a control group. The median age of patients was 49 years (IQR: 37.8 to 55.3). There were 47 males. The median post-COVID time was 219 (IQR: 143 to 258) days. Latent autoimmunity and polyautoimmunity were found in 83% and 62% of patients, respectively.

Three patients developed an overt autoimmune disease. IgG antibodies against IL-2, CD8B, and thyroglobulin were found in more than 10% of the patients. Other IgG autoantibodies, such as anti-interferons, were positive in 5-10% of patients. Anti-SARS-CoV-2 IgG antibodies were found in > 85% of patients and were positively correlated with autoantibodies, age, and body mass index (BMI). Few autoantibodies were influenced by age and BMI. There was no effect of gender on the over- or under-expression of autoantibodies. IgG anti-IFN-λ antibodies were associated with the persistence of respiratory symptoms.

In summary, autoimmunity is characteristic of PCS, and latent autoimmunity correlates with humoral response to SARS-CoV-2.

Source: Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, Ramírez-Santana C, Anaya JM. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022 Mar 16;20(1):129. doi: 10.1186/s12967-022-03328-4. PMID: 35296346; PMCID: PMC8924736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924736/ (Full text)

Long COVID from rheumatology perspective: a simple mimicker or promoter of autoimmunity?

Dear editor,

We have read with great interest the review article by Sapkota et al. which has been recently published in the Clinical Rheumatology journal dealing with long COVID []. In this paper, the authors reported the symptoms and immunological findings of patients who were infected from severe acute respiratory syndrome coronovirus-2 (SARS-CoV-2). These symptoms and laboratory features share similarities with those of patients suffering from autoimmune rheumatic diseases (ARDs). They concluded that long COVID is a mimicker of ARDs and needs to be excluded to ensure a correct diagnosis [].

Recently, we reported a patient who contracted SARS-CoV-2 infection and developed an erosive seronegative arthritis six months after infection []. Musculoskeletal, cutaneous, and other systemic manifestations, along with the presence of autoantibodies, are frequently observed in these patients. On the other hand, SARS-CoV-2 may trigger autoimmune responses and the development of de-novo manifestations of ARDs, as in our patient []. The pathogenesis of these phenomena is not well defined. One hypothesis implies the presence of autoantibodies against interferon (IFN) type-I, or inborn errors in the type-I IFN immunity []. Another hypothesis is that SARS-CoV-2 might trigger autoimmune responses through molecular mimicry []. Several viruses have been implicated as possible etiological factors for the development of ARDs, mostly systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and others. Between viruses Epstein-Barr virus (EBV) is implicated in the pathogenesis of the above disorders []. Indeed, EBV can trigger immune responses through molecular mimicry and is a polyclonal activator of B-cells and increases the production of rheumatoid factor (RF). Several studies suggested that molecular mimicry is a possible mechanism responsible for the development of ARDs in SARS-CoV-2 infection []. Thus, SARS-CoV-2 may trigger autoimmunity and the possible development of the de novo manifestations of ARDs.

Read the full article HERE.

Source: Drosos AA, Pelechas E, Voulgari PV. Long COVID from rheumatology perspective: a simple mimicker or promoter of autoimmunity? Clin Rheumatol. 2022 Feb 11:1–2. doi: 10.1007/s10067-022-06092-4. Epub ahead of print. PMID: 35147823; PMCID: PMC8831874. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831874/ (Full text)