Children and Young People with Long COVID—Comparing Those Seen in Post-COVID Services with a Non-Hospitalised National Cohort: A Descriptive Study

Abstract:

Background: Post-COVID services have been set up in England to treat children with ongoing symptoms of Long COVID. To date, the characteristics of children seeking treatment from these services has not been described.
Purpose: (1) to describe the characteristics of children aged 11–17 referred to the Pan-London Post-COVID service and (2) to compare characteristics of these children with those taking part in the United Kingdom’s largest research study of Long COVID in children (CLoCk).
Design: Data from 95 children seeking treatment from the Post-COVID service between May 2021 and August 2022 were included in the study. Their demographic characteristics, symptom burden and the impact of infection are described and compared to children from CLoCk.
Results: A high proportion of children from the Post-COVID service and CLoCk reported experiencing health problems prior to the pandemic. Almost all Post-COVID service children met the research Delphi definition of Long COVID (94.6%), having multiple symptoms that impacted their lives. Symptoms were notably more severe than the participants in CLoCk.
Conclusions: This study describes the characteristics of children seeking treatment for Long COVID compared to those identified in the largest longitudinal observational study to date. Post-COVID service children have more symptoms and are more severely affected by their symptoms following infection with COVID-19 than children in the CLoCk study. Research to understand predisposing factors for severity and prognostic indicators is essential to prevent this debilitating condition. Evaluation of short- and long-term outcomes of interventions by clinical services can help direct future therapy for this group.
Source: Newlands F, Goddings A-L, Juste M, Boyd H, Nugawela MD, Pinto Pereira SM, Whelan E, Whittaker E, Stephenson T, Heyman I, et al. Children and Young People with Long COVID—Comparing Those Seen in Post-COVID Services with a Non-Hospitalised National Cohort: A Descriptive Study. Children. 2023; 10(11):1750. https://doi.org/10.3390/children10111750 https://www.mdpi.com/2227-9067/10/11/1750 (Full text)

A systematic review of quantitative EEG findings in Long COVID, Fibromyalgia and Chronic Fatigue Syndrome

Abstract:

Long COVID (LC) is a multisymptom clinical syndrome with similarities to Fibromyalgia Syndrome (FMS) and Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). All these conditions are believed to be associated with centrally driven mechanisms such as central sensitisation.

There is a lack of consensus on quantitative EEG (qEEG) changes observed in these conditions. This review aims to synthesise and appraise the literature on resting-state qEEG in LC, FMS and CFS/ME, to help uncover possible mechanisms of central sensitisation in these similar clinical syndromes.

A systematic search of MEDLINE, Embase, CINHAL, PsycINFO and Web of Science databases for articles published between December 1994 and September 2023 was performed. Following screening for predetermined selection criteria and out of the initial 2510 studies identified, 17 articles were retrieved that met all the inclusion criteria, particularly of assessing qEEG changes in one of the three conditions compared to healthy controls. All studies scored moderate to high quality on the Newcastle-Ottawa scale.

There was a general trend for decreased low frequency EEG band activity (delta, theta, and alpha) and increased high-frequency EEG beta activity in FMS, whereas an opposite trend was found in CFS/ME. The limited LC studies included in this review focused mainly on cognitive impairments and showed mixed findings not consistent with patterns seen in FMS and CFS/ME.

Further research is required to explore whether there are phenotypes within LC that have EEG signatures similar to FMS or CFS/ME. This could inform identification of reliable diagnostic markers and possible targets for neuromodulation therapies.

Source: Bárbara Silva-Passadouro, Arnas Tamasauskas, Omar Khoja, Alexander J. Casson, Ioannis Delis, Christopher Brown, Manoj Sivan. A systematic review of quantitative EEG findings in Long COVID, Fibromyalgia and Chronic Fatigue Syndrome. medRxiv [Preprint] https://www.medrxiv.org/content/10.1101/2023.11.06.23298171v1.full-text (Full text)

Case report: Recurrent cervical spinal stenosis masquerading as myalgic encephalomyelitis/chronic fatigue syndrome with orthostatic intolerance

Abstract:

Introduction: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, chronic, multi-system disorder that is characterized by a substantial impairment in the activities that were well tolerated before the illness.

In an earlier report, we had described three adult women who met criteria for ME/CFS and orthostatic intolerance, and had congenital or acquired cervical spinal stenosis. All three experienced substantial global improvements in their ME/CFS and orthostatic intolerance symptoms after recognition and surgical treatment of the cervical stenosis. After a several year period of improvement, one of the individuals in that series experienced a return of ME/CFS and orthostatic intolerance symptoms.

Main Symptoms and Clinical Findings: Radiologic investigation confirmed a recurrence of the ventral compression of the spinal cord due to a shift of the disc replacement implant at the involved cervical spinal level.

Therapeutic Intervention: Decompression of the spinal cord with removal of the implant and fusion at the original C5-C6 level was once again followed by a similar degree of improvement in function as had been observed after the first operation.

This recapitulation of the outcomes after surgical management of cervical stenosis provides further evidence in support of the hypothesis that cervical spinal stenosis can exacerbate pre-existing or cause new orthostatic intolerance and ME/CFS. Especially for those with refractory symptoms and neurological signs, surgical interventions may offer relief for selected patients with this complex condition.

Source: Charles C. Edwards III, Charles C. Edwards II, Scott Heinlein, Peter C. Rowe. Case report: Recurrent cervical spinal stenosis masquerading as myalgic encephalomyelitis/chronic fatigue syndrome with orthostatic intolerance. Frontiers in Neurology, Volume-14- 2023. https://www.frontiersin.org/articles/10.3389/fneur.2023.1284062/abstract

Post Viral Pain, Fatigue, and Sleep Disturbance Syndromes: Current knowledge and Future Directions

Abstract:

Post-viral pain syndrome, also known as post-viral syndrome (PVS), is a complex condition characterized by persistent pain, fatigue, musculoskeletal pain, neuropathic pain, neurocognitive difficulties, and sleep disturbances1,2 that can occur after an individual has recovered from a viral infection. Much remains unknown regarding the pathophysiology of post-viral syndromes and few studies have provided a comprehensive summary of the condition, agents that cause it, and successful treatment modalities.

With the COVID-19 pandemic continuing to affect millions of people worldwide, the need for understanding the etiology of post-viral illness and how to help individuals cope with the sequalae is paramount.2 This narrative review provides a summary of the sequelae of post-viral syndromes, viral agents that cause it, the pathophysiology, treatment, and future considerations for research and targeted therapies.

Source: Caleb TackeyP. Maxwell SlepianHance Clarke & Nimish Mittal (2023) Post Viral Pain, Fatigue, and Sleep Disturbance Syndromes: Current knowledge and Future Directions, Canadian Journal of Pain, DOI: 10.1080/24740527.2023.2272999 https://www.tandfonline.com/doi/full/10.1080/24740527.2023.2272999 (Full text)

Blood T cell phenotypes correlate with fatigue severity in post-acute sequelae of COVID-19

Abstract:

Purpose: Post-acute sequelae of COVID-19 (PASC) affect approximately 10% of convalescent patients. The spectrum of symptoms is broad and heterogeneous with fatigue being the most often reported sequela. Easily accessible blood biomarkers to determine PASC severity are lacking. Thus, our study aimed to correlate immune phenotypes with PASC across the severity spectrum of COVID-19.

Methods: A total of 176 originally immunonaïve, convalescent COVID-19 patients from a prospective cohort during the first pandemic phase were stratified by initial disease severity and underwent clinical, psychosocial, and immune phenotyping around 10 weeks after first COVID-19 symptoms. COVID-19-associated fatigue dynamics were assessed and related to clinical and immune phenotypes.

Results: Fatigue and severe fatigue were commonly reported irrespective of initial COVID-19 severity or organ-specific PASC. A clinically relevant increase in fatigue severity after COVID-19 was detected in all groups. Neutralizing antibody titers were higher in patients with severe acute disease, but no association was found between antibody titers and PASC. While absolute peripheral blood immune cell counts in originally immunonaïve PASC patients did not differ from unexposed controls, peripheral CD3+CD4+ T cell counts were independently correlated with fatigue severity across all strata in multivariable analysis.

Conclusions: Patients were at similar risk of self-reported PASC irrespective of initial disease severity. The independent correlation between fatigue severity and blood T cell phenotypes indicates a possible role of CD4+ T cells in the pathogenesis of post-COVID-19 fatigue, which might serve as a blood biomarker.

Source: Pink, I., Hennigs, J.K., Ruhl, L. et al. Blood T cell phenotypes correlate with fatigue severity in post-acute sequelae of COVID-19. Infection (2023). https://doi.org/10.1007/s15010-023-02114-8 https://link.springer.com/article/10.1007/s15010-023-02114-8 (Full text)

First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody

Abstract:

With most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell biodistribution in humans. A 89Zr-labeled CD8-targeted minibody (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals (N = 3) and coronavirus disease 2019 (COVID-19) convalescent patients (N = 5).
Kinetic modeling results aligned with T cell–trafficking effects expected in lymphoid organs. Tissue-to-blood ratios from the first 7 hours of imaging were higher in bone marrow of COVID-19 convalescent patients compared to controls, with an increasing trend between 2 and 6 months after infection, consistent with modeled net influx rates and peripheral blood flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory.
Source: Omidvari N, Jones T, Price PM, Ferre AL, Lu J, Abdelhafez YG, Sen F, Cohen SH, Schmiedehausen K, Badawi RD, Shacklett BL, Wilson I, Cherry SR. First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody. Sci Adv. 2023 Oct 13;9(41):eadh7968. doi: 10.1126/sciadv.adh7968. Epub 2023 Oct 12. PMID: 37824612; PMCID: PMC10569706. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569706/ (Full text)

Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation

Abstract:

Mast cells (MC) are ubiquitous in the body and are critical for allergic diseases, but also in immunity and inflammation, as well as potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal and the adrenal glands that would allow them to regulate, but also be affected by the autonomic nervous system (ANS).

MC are stimulated not only by allergens, but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory and vasoactive mediators. Hence MC may be able to regulate homeostatic functions that appear to be dysfunctional in many conditions, such as postural orthostatic hypertension syndrome (POTS), autism spectrum disorder (ASD), myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long-COVID syndrome.

The evidence indicates that there is a possible association between these conditions and diseases associated with mast cell activation, There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.

Source: Theoharides TC, Twahir A, Kempuraj D. Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation. Ann Allergy Asthma Immunol. 2023 Nov 9:S1081-1206(23)01397-2. doi: 10.1016/j.anai.2023.10.032. Epub ahead of print. PMID: 37951572. https://pubmed.ncbi.nlm.nih.gov/37951572/

Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology

Abstract:

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks.

In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression.

Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.

Source:Aguado, J., Amarilla, A.A., Taherian Fard, A. et al. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat Aging (2023). https://doi.org/10.1038/s43587-023-00519-6 https://www.nature.com/articles/s43587-023-00519-6 (Full text)

Dry eye symptoms and signs in United States Gulf War era veterans with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: To examine ocular symptoms and signs of veterans with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) diagnosis, ME/CFS symptoms, and controls.

Methods: This was a prospective, cross-sectional study of 124 South Florida veterans in active duty during the Gulf War era. Participants were recruited at an ophthalmology clinic at the Miami Veterans Affairs Hospital and evaluated for a diagnosis of ME/CFS, or symptoms of ME/CFS (intermediate fatigue, IF) using the Canadian Consensus criteria. Ocular symptoms were assessed via standardised questionnaires and signs via comprehensive slit lamp examination. Inflammatory blood markers were analysed and compared across groups.

Results: Mean age was 55.1 ± 4.7 years, 88.7% identified as male, 58.1% as White, and 39.5% as Hispanic. Ocular symptoms were more severe in the ME/CFS (n = 32) and IF (n = 48) groups compared to controls (n = 44) across dry eye (DE; Ocular Surface Disease Index [OSDI]: 48.9 ± 22.3 vs. 38.8 ± 23.3 vs. 19.1 ± 17.8, p < 0.001; 5 item Dry Eye Questionnaire [DEQ-5]: 10.8 ± 3.9 vs. 10.0 ± 4.6 vs. 6.6 ± 4.2, p < 0.001) and pain-specific questionnaires (Numerical Rating Scale 1-10 [NRS] right now: 2.4 ± 2.8 vs. 2.4 ± 2.9 vs 0.9 ± 1.5; p = 0.007; Neuropathic Pain Symptom Inventory modified for the Eye [NPSI-E]: 23.0 ± 18.6 vs. 19.8 ± 19.1 vs. 6.5 ± 9.0, p < 0.001). Ocular surface parameters and blood markers of inflammation were generally similar across groups.

Conclusion: Individuals with ME/CFS report increased ocular pain but similar DE signs, suggesting that mechanisms beyond the ocular surface contribute to symptoms.

Source: Victor Sanchez BS, Colin K. Kim BS, Elyana V. T. Locatelli BS, Adam K. Cohen, Kimberly Cabrera MS, Kristina Aenlle PhD, Nancy G. Klimas MD, Robert O’Brien PhD, Anat Galor MD, MSPH. Dry eye symptoms and signs in United States Gulf War era veterans with myalgic encephalomyelitis/chronic fatigue syndrome. First published: 12 November 2023 https://doi.org/10.1111/ceo.14313 https://onlinelibrary.wiley.com/doi/10.1111/ceo.14313 (Full text)

Post-Vaccination Syndrome: A Descriptive Analysis of Reported Symptoms and Patient Experiences After Covid-19 Immunization

Abstract:

Introduction: A chronic post-vaccination syndrome (PVS) after covid-19 vaccination has been reported but has yet to be well characterized.

Methods: We included 241 individuals aged 18 and older who self-reported PVS after covid-19 vaccination and who joined the online Yale Listen to Immune, Symptom and Treatment Experiences Now (LISTEN) Study from May 2022 to July 2023. We summarized their demographics, health status, symptoms, treatments tried, and overall experience.

Results: The median age of participants was 46 years (interquartile range [IQR]: 38 to 56), with 192 (80%) identifying as female, 209 (87%) as non-Hispanic White, and 211 (88%) from the United States. Among these participants with PVS, 127 (55%) had received the BNT162b2 [Pfizer-BioNTech] vaccine, and 86 (37%) received the mRNA-1273 [Moderna] vaccine. The median time from the day of index vaccination to symptom onset was three days (IQR: 1 day to 8 days). The time from vaccination to symptom survey completion was 595 days (IQR: 417 to 661 days). The median Euro-QoL visual analogue scale score was 50 (IQR: 39 to 70). The five most common symptoms were exercise intolerance (71%), excessive fatigue (69%), numbness (63%), brain fog (63%), and neuropathy (63%). In the week before survey completion, participants reported feeling unease (93%), fearfulness (82%), and overwhelmed by worries (81%), as well as feelings of helplessness (80%), anxiety (76%), depression (76%), hopelessness (72%), and worthlessness (49%) at least once. Participants reported a median of 20 (IQR: 13 to 30) interventions to treat their condition.

Conclusions: In this study, individuals who reported PVS after covid-19 vaccination had low health status, high symptom burden, and high psychosocial stress despite trying many treatments. There is a need for continued investigation to understand and treat this condition.

Source: Harlan M KrumholzYilun WuMitsuaki SawanoRishi ShahTianna ZhouAdith S ArunPavan KhoslaShayaan KaleemAnushree VashistBornali BhattacharjeeQinglan DingYuan LuCesar CaraballoFrederick WarnerChenxi HuangJeph HerrinDavid PutrinoDanice HertzBrianne DressenAkiko Iwasaki. Post-Vaccination Syndrome: A Descriptive Analysis of Reported Symptoms and Patient Experiences After Covid-19 Immunization. (Full text available as PDF file)