Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated ß2-Adrenergic Receptor Autoantibodies—An Interim Report

Abstract:

There is increasing evidence for an autoimmune aetiology in post-infectious Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). SARS-CoV-2 has now become the main trigger for ME/CFS. We have already conducted two small proof-of-concept studies on IgG depletion by immunoadsorption (IA) in post-infectious ME/CFS, which showed efficacy in most patients.
This observational study aims to evaluate the efficacy of IA in patients with post-COVID-19 ME/CFS. The primary objective was to assess the improvement in functional ability. Due to the urgency of finding therapies for post-COVID-Syndrome (PCS), we report here the interim results of the first ten patients, with seven responders defined by an increase of between 10 and 35 points in the Short-Form 36 Physical Function (SF36-PF) at week four after IA. The results of this observational study will provide the basis for patient selection for a randomised controlled trial (RCT), including sham apheresis, and for an RCT combining IA with B-cell depletion therapy. Trial registration number: NCT05629988.
Source: Stein E, Heindrich C, Wittke K, Kedor C, Kim L, Freitag H, Krüger A, Tölle M, Scheibenbogen C. Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated ß2-Adrenergic Receptor Autoantibodies—An Interim Report. Journal of Clinical Medicine. 2023; 12(19):6428. https://doi.org/10.3390/jcm12196428 https://www.mdpi.com/2077-0383/12/19/6428 (Full text)

Atopy and Elevation of IgE, IgG3, and IgG4 May Be Risk Factors for Post COVID-19 Condition in Children and Adolescents

Abstract:

SARS-CoV-2 infection causes transient cardiorespiratory and neurological disorders, and severe acute illness is rare among children. Post COVID-19 condition (PCC) may cause profound, persistent phenotypes with increasing prevalence. Its manifestation and risk factors remain elusive. In this monocentric study, we hypothesized that atopy, the tendency to produce an exaggerated immunoglobulin E (IgE) immune response, is a risk factor for the manifestation of pediatric PCC.
We present a patient cohort (n = 28) from an early pandemic period (2021–2022) with comprehensive evaluations of phenotypes, pulmonary function, and molecular investigations. PCC predominantly affected adolescents and presented with fatigue, dyspnea, and post-exertional malaise. Sensitizations to aeroallergens were found in 93% of cases.
We observed elevated IgE levels (mean 174.2 kU/L, reference < 100 kU/L) regardless of disease severity. Concurrent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) was found in 29% of patients that also faced challenges in school attendance. ME/CFS manifestation was significantly associated with elevated immunoglobulin G subclasses IgG3 (p < 0.05) and IgG4 (p < 0.05). A total of 57% of patients showed self-limiting disease courses with mean recovery at 12.7 months (range 5–25 months), 29% at 19.2 months (range 12–30 months), and the rest demonstrated overall improvement. These findings offer additional insights into immune dysregulation as a risk factor for pediatric PCC.
Source: Körner RW, Bansemir OY, Franke R, Sturm J, Dafsari HS. Atopy and Elevation of IgE, IgG3, and IgG4 May Be Risk Factors for Post COVID-19 Condition in Children and Adolescents. Children. 2023; 10(10):1598. https://doi.org/10.3390/children10101598 https://www.mdpi.com/2227-9067/10/10/1598 (Full text)

HERV activation segregates ME/CFS from fibromyalgia and defines a novel nosological entity for patients fulfilling both clinical criteria

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and fibromyalgia (FM) are chronic diseases with poorly understood pathophysiology and diagnosis based on clinical assessment of unspecific symptoms. The recent post-COVID-19 condition, which shares similarities with ME/CFS and FM, has raised concerns about viral-induced transcriptome changes in post-viral syndromes. Viral infections, and other types of stress, are known to unleash human endogenous retroviruses (HERV) repression that if maintained could lead to symptom chronicity. This study evaluated this possibility for ME/CFS and FM on a selected cohort of female patients complying with diagnosis criteria for ME/CFS, FM, or both, and matched healthy controls (n=43).

The results show specific HERV fingerprints for each disease, confirming biological differences between ME/CFS and FM. Unexpectedly, HERV profiles segregated patients that met both ME/CFS and FM clinical criteria from patients complying only with ME or FM criteria, while clearly differentiating patients from healthy subjects, supporting that the highly prevalent comorbidity condition must constitute a different nosological entity.

Moreover, HERV profiles exposed significant quantitative differences within the ME/CFS group that correlated with differences in immune gene expression and patient symptomatology, supporting ME/CFS patient subtyping and confirming immunological disturbances in this disease. Pending issues include validation of HERV profiles as disease biomarkers of post-viral syndromes and understanding the role of HERV during infection and beyond.

Source: Karen Gimenez-OrengaEva Martin-MartinezLubov NathansonElisa Oltra. HERV activation segregates ME/CFS from fibromyalgia and defines a novel nosological entity for patients fulfilling both clinical criteria.

 

Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID?

Abstract:

Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies.

Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with “weak” EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity.

Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with “weak” HLA-II haplotypes against this virus and/or EBV.

Source: Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med. 2023 Sep 17;21(1):633. doi: 10.1186/s12967-023-04515-7. PMID: 37718435. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04515-7 (Full text)

In severe first episode major depressive disorder, psychosomatic, chronic fatigue syndrome, and fibromyalgia symptoms are driven by immune activation and increased immune-associated neurotoxicity.

Abstract:

Background: Major depressive disorder (MDD) is accompanied by activated neuro-immune pathways, increased physiosomatic and chronic fatigue-fibromyalgia (FF) symptoms. The most severe MDD phenotype, namely major dysmood disorder (MDMD), is associated with adverse childhood experiences (ACEs) and negative life events (NLEs) which induce cytokines/chemokines/growth factors.

Aims: To delineate the impact of ACE+NLEs on physiosomatic and FF symptoms in first episode (FE)-MDMD, and examine whether these effects are mediated by immune profiles.

Methods: ACEs, NLEs, physiosomatic and FF symptoms, and 48 cytokines/chemokines/growth factors were measured in 64 FE-MDMD patients and 32 normal controls.

Results: Physiosomatic, FF and gastro-intestinal symptoms belong to the same factor as depression, anxiety, melancholia, and insomnia. The first factor extracted from these seven domains is labeled the physio-affective phenome of depression. A part (59.0%) of the variance in physiosomatic symptoms is explained by the independent effects of interleukin (IL)-16 and IL-8 (positively), CCL3 and IL-1 receptor antagonist (inversely correlated). A part (46.5%) of the variance in physiosomatic (59.0%) symptoms is explained by the independent effects of interleukin (IL)-16, TNF-related apoptosis-inducing ligand (TRAIL) (positively) and combined activities of negative immunoregulatory cytokines (inversely associated).

Partial Least Squares analysis shows that ACE+NLEs exert a substantial influence on the physio-affective phenome which are partly mediated by an immune network composed of interleukin-16, CCL27, TRAIL, macrophage-colony stimulating factor, and stem cell growth factor.

Conclusions: The physiosomatic and FF symptoms of FE-MDMD are partly caused by immuneassociated neurotoxicity due to Th-1 polarization, T helper-1, and M1 macrophage activation and relative lowered compensatory immunoregulatory protection.

Source: Michael Maes, Abbas F Almulla, Bo Zhou, Ali Abbas Abo Algon, Pimpayao Sodsai. In severe first episode major depressive disorder, psychosomatic, chronic fatigue syndrome, and fibromyalgia symptoms are driven by immune activation and increased immune-associated neurotoxicity. ResearchGate [Preprint] https://www.researchgate.net/publication/372940821_In_severe_first_episode_major_depressive_disorder_psychosomatic_chronic_fatigue_syndrome_and_fibromyalgia_symptoms_are_driven_by_immune_activation_and_increased_immune-associated_neurotoxicity (Full text)

Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases?

Abstract:

It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as ‘self’, and otherwise immunologically silent.

The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies.

A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.

Source: Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J. 2023 Aug 16;480(15):1217-1240. doi: 10.1042/BCJ20230241. PMID: 37584410. https://portlandpress.com/biochemj/article/480/15/1217/233389/Are-fibrinaloid-microclots-a-cause-of-autoimmunity (Full text)

Surveying the Metabolic and Dysfunctional Profiles of T Cells and NK Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Millions globally suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The inflammatory symptoms, illness onset, recorded outbreak events, and physiological variations provide strong indications that ME/CFS, at least sometimes, has an infectious origin, possibly resulting in a chronic unidentified viral infection.
Meanwhile, studies exposing generalized metabolic disruptions in ME/CFS have stimulated interest in isolated immune cells with an altered metabolic state. As the metabolism dictates the cellular function, dissecting the biomechanics of dysfunctional immune cells in ME/CFS can uncover states such as exhaustion, senescence, or anergy, providing insights into the consequences of these phenotypes in this disease. Despite the similarities that are seen metabolically between ME/CFS and other chronic viral infections that result in an exhausted immune cell state, immune cell exhaustion has not yet been verified in ME/CFS.
This review explores the evidence for immunometabolic dysfunction in ME/CFS T cell and natural killer (NK) cell populations, comparing ME/CFS metabolic and functional features to dysfunctional immune cell states, and positing whether anergy, exhaustion, or senescence could be occurring in distinct immune cell populations in ME/CFS, which is consistent with the hypothesis that ME/CFS is a chronic viral disease.
This comprehensive review of the ME/CFS immunometabolic literature identifies CD8+ T cell exhaustion as a probable contender, underscores the need for further investigation into the dysfunctional state of CD4+ T cells and NK cells, and explores the functional implications of molecular findings in these immune-cell types. Comprehending the cause and impact of ME/CFS immune cell dysfunction is critical to understanding the physiological mechanisms of ME/CFS, and developing effective treatments to alleviate the burden of this disabling condition.
Source: Maya J. Surveying the Metabolic and Dysfunctional Profiles of T Cells and NK Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Molecular Sciences. 2023; 24(15):11937. https://doi.org/10.3390/ijms241511937 https://www.mdpi.com/1422-0067/24/15/11937 (Full text)

Comparison of T-cell Receptor Diversity of people with Myalgic Encephalomyelitis versus controls

Abstract:

Objective: Myalgic Encephalomyelitis (ME; sometimes referred to as Chronic Fatigue Syndrome or CFS) is a chronic disease without laboratory test, detailed aetiological understanding or effective therapy. Its symptoms are diverse, but it is distinguished from other fatiguing illnesses by the experience of post-exertional malaise, the worsening of symptoms even after minor physical or mental exertion. Its frequent onset after infection might indicate that it is an autoimmune disease or that it arises from abnormal T-cell activation.

Results: To test this hypothesis, we sequenced the genomic loci of a/d, b and g T-cell receptors (TCR) from 40 human blood samples from each of four groups: severely affected people with ME/CFS; mildly or moderately affected people with ME/CFS; people diagnosed with Multiple Sclerosis, as disease controls; and, healthy controls. Seeking to automatically classify these individuals’ samples by their TCR repertoires, we applied P-SVM, a machine learning method. However, despite working well on a simulated data set, this approach did not partition samples into the four subgroups, beyond what was expected by chance alone.  Our findings do not support the hypothesis that blood samples from people with ME/CFS frequently contain altered T-cell receptor diversity.

Source: Joshua J Dibble, Ben Ferneyhough, Matthew Roddis et al. Comparison of T-cell Receptor Diversity of people with Myalgic Encephalomyelitis versus controls, 19 July 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3164397/v1]  https://www.researchsquare.com/article/rs-3164397/v1 (Full text)

An understanding of the immune dysfunction in susceptible people who develop the post-viral fatigue syndromes Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID

Abstract:

Viral infection in most people results in a transient immune/inflammatory response resulting in elimination of the virus and recovery where the immune system returns to that of the pre-infectious state. In susceptible people by contrast there is a transition from an acute immune response to a chronic state that can lead to an ongoing lifelong complex post-viral illness, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. This susceptibility is proposed to be genetic or be primed by prior health history. Complex abnormalities occur in immune cell functions, immune cell metabolism and energy production, and in cytokine immune modulator regulation. The immune system of the brain/central nervous system becomes activated leading to dysfunction in regulation of body physiology and the onset of many neurological symptoms.

A dysfunctional immune system is core to the development of the post-viral condition as shown with diverse strategies of immune profiling.  Many studies have shown changes in numbers and activity of immune cells of different phenotypes and their metabolism. Immune regulating cytokines show complex altered patterns and vary with the stage of the disease, and there are elements of associated autoimmunity.  These complex changes are accompanied by an altered molecular homeostasis with immune cell transcripts and proteins no longer produced in a tightly regulated manner, reflected in the instability of the epigenetic code that controls gene expression.

Potential key elements of the altered immune function in this disease needing further exploration are changes to the gut-brain-immune axis as a result of changes in the microbiome of the gut, and viral reactivation from latent elements of the triggering virus or from a prior viral infection. Long COVID, an Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-like illness, is the post-viral condition that has arisen in large numbers solely from the pandemic virus Severe Acute Respiratory Syndrome Coronovirus-2.

With over 760 million cases worldwide, an estimated ~100 million cases of Long COVID have occurred within a short period. This now provides an unprecedented opportunity to understand the progression of these post-viral diseases, and to progress from a research phase mainly documenting the immune changes to considering potential immunotherapies that might improve the overall symptom profile of affected patients, and provide them with a better quality of life.

Source: WALKER, Max O.M. et al. An understanding of the immune dysfunction in susceptible people who develop the post-viral fatigue syndromes Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID. Medical Research Archives, [S.l.], v. 11, n. 7.1, july 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4083>. Date accessed: 15 july 2023. doi: https://doi.org/10.18103/mra.v11i7.1.4083. https://esmed.org/MRA/mra/article/view/4083/99193547075 (Full text as PDF file)

A Thesis on Immune Differences in Chronic Fatigue Syndrome, Fibromyalgia and Healthy Controls

Abstract:

Background: Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM) are debilitating disorders that significantly affect the daily lives of those suffering from them, as well as their loved ones. Both conditions have overlapping clinical features that resemble inflammatory disorders, and overlapping symptoms, such as depression, suggest central nervous system (CNS) involvement. The role of the immune system’s soluble messengers in the pathogenesis of CFS and FM has been under investigation, but so far the results are inconclusive. In addition, there is growing evidence that the kynurenine pathway is involved in the pathology of diseases related to the CNS, yet the role of each metabolite is not clear. The relationship between kynurenine metabolism and CFS and FM has not been extensively explored. Few studies have simultaneously examined the immunological status in both CFS and FM, making this thesis the first to comprehensively evaluate the potential distinct immunological differences between the two disorders.

Objective: The objective of this study was to compare the CFS and FM with healthy controls, regarding the levels of several soluble blood markers related to the immune system. The markers chosen were:

  • The inflammatory marker high-sensitive CRP (hsCRP)
  • The following cytokines and chemokines: Interferon (IFN)-γ, Interleukin (IL)-1β, IL1ra, IL-4, IL-6, IL-8, IL-10, IL-17, Interferon gamma-induced protein (IP)-10, Monocyte Chemoattractant Protein (MCP)-1, Transforming Growth Factor (TGF)-β1, TGF-β2, TGF-β3 and Tumour Necrosis Factor (TNF)-α
  • The metabolites and their ratios of the kynurenine pathway: Tryptophan (Try), kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykykynurenine (HK), anthranilic acid (AA), xanthurenic acid (XA), 3-hydroxyanthranilic acid (HAA), quinolinic acid (QA) and picolinic acid (Pic).

Method: The population consisted of three groups: CFS patients (n = 49), FM patients (n = 58), and healthy controls (n = 54). All participants were females aged 18–60. Patients were recruited from a specialised university hospital clinic and controls were recruited by advertisement among the staff and students at the hospital and university.

Plasma levels of hsCRP were analysed at the hospital. The cytokines and chemokines IFN-γ, IL-1β, IL-1ra, xii IL-4, IL-6, IL-8, IL-10, IL-17, IP-10, MCP-1, TGF-β1, TGF-β2, TGF-β3, and TNF-α were analysed by multiplex. Kynurenine metabolites were analysed by LC-MS/MS.

Linear regression models of log-transformed data for hsCRP and the kynurenine metabolites were conducted for comparison of the three groups CFS, FM and controls. The Kruskal-Wallis test was used to analyse differences of cytokines between the three groups. Main findings were controlled for age, body mass index (BMI), and symptoms of anxiety and depression.

Results: hsCRP levels were significantly higher for both the CFS and FM groups compared to healthy controls when adjusting for age and BMI (p = .006). There was no difference between the two patient groups. Level of hsCRP was affected by BMI (p < .001) but not age.

MCP-1 was significantly increased in both patient groups compared to healthy controls (p < .001). IL-1β, Il-4, IL-6, TNF-α, TGF-β1, TGF-β2, TGF-β3 (all p < .001), IL-10 (p = .003) and IL17 (p = .002) all were significantly lower in the patient groups compared to healthy controls. IFN-γ was significantly lower in the FM group (p < .001). For IL-8, IP-10 and IL1ra there were no significant difference.

QA differed between CFS and FM patients (p = .036) and was related to higher levels of BMI (p = .002). The KA/QA ratio was lower for CFS patients compared to healthy controls (p = .016). The KA/HK ratio was lower for FM patients compared to healthy controls, and this lower ratio was associated with increased symptoms of pain (p = .002). The kynurenine aminotransferase II (KAT II) enzymatic activity given by XA/HK was lower for FM patients compared to healthy controls (p = .013). In addition, BMI was negatively associated with enhanced KAT II enzymatic activity (p = .039).

Symptoms of anxiety and depression were not associated with any of the immune markers studied.

Conclusion: In our material hsCRP and MCP-1 are increased in patients both with CFS and with FM, while several other cytokines are either similar or significantly lower in patients than controls. Our study also indicates associations between kynurenine metabolism and CFS and FM. Kynurenine also is associated with single symptoms such as fatigue and pain. Forthcoming studies indicating interactions and causative effects, or restoration of the inflammatory status, may place cytokines and kynurenine metabolites as a target for treatment as well as prevention of these conditions in the future.

Source: Groven, Nina. A Thesis on Immune Differences in Chronic Fatigue Syndrome, Fibromyalgia and Healthy Controls. PhD Thesis [Norwegian University of Science and Technology] https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3072207 (Full text available as PDF file)