Plasma proteome of Long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function

Abstract:

Aims: Long-COVID occurs after SARS-CoV-2 infection and results in diverse, prolonged symptoms. The present study aimed to unveil potential mechanisms, and to inform prognosis and treatment.

Methods: Plasma proteome from Long-COVID outpatients was analyzed in comparison to matched acutely ill COVID-19 (mild and severe) inpatients and healthy control subjects. The expression of 3072 protein biomarkers was determined with proximity extension assays and then deconvoluted with multiple bioinformatics tools into both cell types and signaling mechanisms, as well as organ specificity.

Results: Compared to age- and sex-matched acutely ill COVID-19 inpatients and healthy control subjects, Long-COVID outpatients showed natural killer cell redistribution with a dominant resting phenotype, as opposed to active, and neutrophils that formed extracellular traps. This potential resetting of cell phenotypes was reflected in prospective vascular events mediated by both angiopoietin-1 (ANGPT1) and vascular-endothelial growth factor-A (VEGFA). Several markers (ANGPT1, VEGFA, CCR7, CD56, citrullinated histone 3, elastase) were validated by serological methods in additional patient cohorts. Signaling of transforming growth factor-β1 with probable connections to elevated EP/p300 suggested vascular inflammation and tumor necrosis factor-α driven pathways. In addition, a vascular proliferative state associated with hypoxia inducible factor 1 pathway suggested progression from acute COVID-19 to Long-COVID. The vasculo-proliferative process predicted in Long-COVID might contribute to changes in the organ-specific proteome reflective of neurologic and cardiometabolic dysfunction.

Conclusions: Taken together, our findings point to a vasculo-proliferative process in Long-COVID that is likely initiated either prior hypoxia (localized or systemic) and/or stimulatory factors (i.e., cytokines, chemokines, growth factors, angiotensin, etc). Analyses of the plasma proteome, used as a surrogate for cellular signaling, unveiled potential organ-specific prognostic biomarkers and therapeutic targets.

Source: Iosef C, Knauer MJ, Nicholson M, Van Nynatten LR, Cepinskas G, Draghici S, Han VKM, Fraser DD. Plasma proteome of Long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function. J Transl Med. 2023 Jun 10;21(1):377. doi: 10.1186/s12967-023-04149-9. PMID: 37301958; PMCID: PMC10257382. https://pmc.ncbi.nlm.nih.gov/articles/PMC10257382/ (Full text)

Could vascular damage caused by massive inflammatory events underlie a relapse/recovery phenotype of ME/CFS and Long COVID?

Abstract:

I hypothesize that there is a relapse/recovery type of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID in which a massive inflammatory event—like the inflammatory cascade prompted by the restoration of blood flow (reperfusion) to tissue that had been deprived of blood (ischemia) or an allergic or pseudoallergic reaction—causes substantial damage to blood vessels, launching a more severe phase of ME/CFS.
People with Ehlers-Danlos syndrome and other connective tissue disorders may be at particular risk of this phenotype due to having connective tissue (a key component of blood vessels) that is more easily and severely injured during inflammatory events and slower to heal, causing a much longer recovery.

Source: Tamara Carnac. Could vascular damage caused by massive inflammatory events underlie a relapse/recovery phenotype of ME/CFS and Long COVID? Patient-Generated Hypotheses Journal | Issue 1, May 2023. https://patientresearchcovid19.com/storage/2023/05/Patient-Generated-Hypotheses-Issue-1-May-2023.pdf#page=30 (Full text)

Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses

Abstract:

ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS.

Since Long COVID is characterized by significant vascular pathology – including endothelial dysfunction, coagulopathy, and vascular dysregulation – the question of whether or not the same biological abnormalities are of significance in ME/CFS arises.

Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms.

Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens.

Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system.

Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes.

Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.

Source: Jean M. Nunes, Douglas B. Kell, Etheresia Pretorius. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood reviews, 20 March 2023, 101075 [Epub ahead of print]  https://www.sciencedirect.com/science/article/pii/S0268960X2300036X (Full text)

Vascular “Long COVID”: A New Vessel Disease?

Abstract:

Vascular sequelae following (SARS-CoV-2 coronavirus disease) (COVID)-19 infection are considered as “Long Covid (LC)” disease, when occurring 12 weeks after the original infection. The paucity of specific data can be obviated by translating pathophysiological elements from the original Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) infection (In a microcirculatory system, a first “endotheliitis,” is often followed by production of “Neutrophil Extracellular Trap,” and can evolve into a more complex leukocytoklastic-like and hyperimmune vasculitis.

In medium/large-sized vessels, this corresponds to endothelial dysfunction, leading to an accelerated progression of pre-existing atherosclerotic plaques through an increased deposition of platelets, circulating inflammatory cells and proteins. Associated dysregulated immune and pro-coagulant conditions can directly cause thrombo-embolic arterial or venous complications. In order to implement appropriate treatment, physicians need to consider vascular pathologies observed after SARS-Cov-2 infections as possible “LC” disease.

Source: Zanini G, Selleri V, Roncati L, Coppi F, Nasi M, Farinetti A, Manenti A, Pinti M, Mattioli AV. Vascular “Long COVID”: A New Vessel Disease? Angiology. 2023 Jan 18:33197231153204. doi: 10.1177/00033197231153204. Epub ahead of print. PMID: 36652923. https://pubmed.ncbi.nlm.nih.gov/36652923/

Vascular “Long COVID”: A New Vessel Disease?

Abstract:

Vascular sequelae following (SARS-CoV-2 coronavirus disease) (COVID)-19 infection are considered as “Long Covid (LC)” disease, when occurring 12 weeks after the original infection. The paucity of specific data can be obviated by translating pathophysiological elements from the original Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) infection (In a microcirculatory system, a first “endotheliitis,” is often followed by production of “Neutrophil Extracellular Trap,” and can evolve into a more complex leukocytoklastic-like and hyperimmune vasculitis. In medium/large-sized vessels, this corresponds to endothelial dysfunction, leading to an accelerated progression of pre-existing atherosclerotic plaques through an increased deposition of platelets, circulating inflammatory cells and proteins. Associated dysregulated immune and pro-coagulant conditions can directly cause thrombo-embolic arterial or venous complications. In order to implement appropriate treatment, physicians need to consider vascular pathologies observed after SARS-Cov-2 infections as possible “LC” disease.

Source: Zanini G, Selleri V, Roncati L, Coppi F, Nasi M, Farinetti A, Manenti A, Pinti M, Mattioli AV. Vascular “Long COVID”: A New Vessel Disease? Angiology. 2023 Jan 18:33197231153204. doi: 10.1177/00033197231153204. Epub ahead of print. PMID: 36652923. https://pubmed.ncbi.nlm.nih.gov/36652923/

Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies

Abstract:

The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury.

Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients.

The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.

Source: Xu, Sw., Ilyas, I. & Weng, Jp. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin (2022). https://doi.org/10.1038/s41401-022-00998-0 https://www.nature.com/articles/s41401-022-00998-0 (Full text)

Post-acute COVID-19 syndrome presented as a cerebral and systemic vasculitis: a case report

To the Editor,

Post-acute Coronavirus Disease of 2019 (COVID-19) syndrome is defined as the appearance of symptoms or an organ dysfunction, which occurs at least 4 weeks after the first COVID-19 manifestations and cannot be explained by any alternative diagnosis []. Neurological complications are also well recognized, and include acute cerebrovascular events, encephalopathy, meningoencephalitis, Guillain–Barre syndrome, demyelination, dementia, parkinsonism, and others []. On the other hand, cerebral vasculitis is one of the causes which can lead to brain damage related to COVID-19 infection []. We present a 69-year-old male with systemic vasculitis and central nervous system (CNS) involvement as a manifestation of post-acute COVID-19 syndrome.

Read the rest of this article HERE.

Source: Ivanovic, Jovana et al. “Post-acute COVID-19 syndrome presented as a cerebral and systemic vasculitis: a case report.” Acta neurologica Belgica, 1–3. 13 Mar. 2022, doi:10.1007/s13760-022-01923-2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918071/ (Full text)

Post-Exertional Malaise May Be Related to Central Blood Pressure, Sympathetic Activity and Mental Fatigue in Chronic Fatigue Syndrome Patients

Abstract:

Post-exertional malaise (PEM) is regarded as the hallmark symptom in chronic fatigue syndrome (CFS). The aim of the current study is to explore differences in CFS patients with and without PEM in indicators of aortic stiffness, autonomic nervous system function, and severity of fatigue. One-hundred and one patients met the Fukuda criteria.

A Chronic Fatigue Questionnaire (CFQ) and Fatigue Impact Scale (FIS) were used to assess the level of mental and physical fatigue. Aortic systolic blood pressure (sBPaortic) and the autonomic nervous system were measured with the arteriograph and Task Force Monitor, respectively. Eighty-two patients suffered prolonged PEM according to the Fukuda criteria, while 19 did not.

Patients with PEM had higher FIS scores (p = 0.02), lower central systolic blood pressure (p = 0.02) and higher mental fatigue (p = 0.03). For a one-point increase in the mental fatigue component of the CFQ scale, the risk of PEM increases by 34%. For an sBPaortic increase of 1 mmHg, the risk of PEM decreases by 5%. For a one unit increase in sympathovagal balance, the risk of PEM increases by 330%.

Higher mental fatigue and sympathetic activity in rest are related to an increased risk of PEM, while higher central systolic blood pressure is related to a reduced risk of PEM. However, none of the between group differences were significant after FDR correction, and therefore conclusions should be treated with caution and replicated in further studies.

Source: Kujawski S, Słomko J, Hodges L, Pheby DFH, Murovska M, Newton JL, Zalewski P. Post-Exertional Malaise May Be Related to Central Blood Pressure, Sympathetic Activity and Mental Fatigue in Chronic Fatigue Syndrome Patients. J Clin Med. 2021 May 26;10(11):2327. doi: 10.3390/jcm10112327. PMID: 34073494. https://pubmed.ncbi.nlm.nih.gov/34073494/

Effects of Post-Exertional Malaise on Markers of Arterial Stiffness in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Evidence is emerging that individuals with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may suffer from chronic vascular dysfunction as a result of illness-related oxidative stress and vascular inflammation. The study aimed to examine the impact of maximal-intensity aerobic exercise on vascular function 48 and 72 h into recovery.

Methods: ME/CFS (n = 11) with gender and age-matched controls (n = 11) were randomly assigned to either a 48 h or 72 h protocol. Each participant had measures of brachial blood pressure, augmentation index (AIx75, standardized to 75 bpm) and carotid-radial pulse wave velocity (crPWV) taken. This was followed by a maximal incremental cycle exercise test. Resting measures were repeated 48 or 72 h later (depending on group allocation).

Results: No significant differences were found when ME/CFS were directly compared to controls at baseline. During recovery, the 48 h control group experienced a significant 7.2% reduction in AIx75 from baseline measures (p < 0.05), while the matched ME/CFS experienced no change in AIx75. The 72 h ME/CFS group experienced a non-significant increase of 1.4% from baseline measures. The 48 h and 72 h ME/CFS groups both experienced non-significant improvements in crPWV (0.56 ms−1 and 1.55 ms−1, respectively).

Conclusions: The findings suggest that those with ME/CFS may not experience exercise-induced vasodilation due to chronic vascular damage, which may be a contributor to the onset of post-exertional malaise (PEM).

Source: Bond J, Nielsen T, Hodges L. Effects of Post-Exertional Malaise on Markers of Arterial Stiffness in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Environmental Research and Public Health. 2021; 18(5):2366. https://doi.org/10.3390/ijerph18052366 https://www.mdpi.com/1660-4601/18/5/2366/htm (Full text)

Pathology of the organ of vision in chronic fatigue syndrome

Abstract:

218 patients were examined and the chronic fatigue syndrome (CFS) was diagnosed in them on the basis of clinical-and-immunologic data. 126 somatically healthy persons of the same age and sex were in the control group. Vascular pathology of the vision organ was found in 153 (70.2%) persons, and dystrophic pathology was found in 115 (52.8%) persons. A combination of vascular and dystrophic pathologies of the vision organ was diagnosed in 46 (21.1%) patients. The detection of vision pathology in the CFS patients essentially exceeded the morbidity of similar pathology in the controls. No reliable differences of refraction anomalies were found between the CFS patients and the controls.

 

Source: Frolov VM, Petrunia AM. Pathology of the organ of vision in chronic fatigue syndrome. Vestn Oftalmol. 2003 Mar-Apr;119(2):45-7. [Article in Russian] http://www.ncbi.nlm.nih.gov/pubmed/13678013