Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations

Abstract:

Background: Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking.

Methods: Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case–control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed.

Results: Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, e, O2CO2 T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for e/CO2, PetCO2, O2pulse, work, O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1.

Conclusions: Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered.

Trial registration number: ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.

Source: Keller, B., Receno, C.N., Franconi, C.J. et al. Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations. J Transl Med 22, 627 (2024). https://doi.org/10.1186/s12967-024-05410-5 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05410-5#Abs1 (Full text)

 

Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

OBJECTIVES/GOALS: Strong evidence has implicated oxidative stress (OS) as a disease mechanism in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The study aim was to assess whether a C>T single nucleotide polymorphism (SNP) (rs1800668), which reduces the activity of glutathione peroxidase 1 (GPX1), is associated with brain OS in patients with ME/CFS.

METHODS/STUDY POPULATION: Study population: The study enrolled 20 patients with ME/CFS diagnosed according to Canadian Consensus Criteria, and 11 healthy control (HC) subjects. Genotyping: DNA was extracted from whole blood samples, amplified by PCR, and purified. Sanger sequencing was used for genotyping. 1H MRS: Proton magnetic resonance spectroscopy (1H MRS) was used to measure levels of glutathione (GSH) a primary tissue antioxidant and OS marker in a 3x3x2 cm3 occipital cortex (OCC) voxel. GSH spectra were recorded in 15 minutes with the standard J-editing technique. The resulting GSH peak area was normalized to tissue water level in the voxel. Statistical Analysis: T-tests were used to compare OCC GSH levels between ME/CFS and HC groups, and between the study’s genotype groups (group 1: CC, group 2: combined TC and TT).

RESULTS/ANTICIPATED RESULTS: Clinical characteristics: ME/CFS and HC groups were comparable on age and BMI but not on sex (p = 0.038). Genotype frequencies: Genotype frequencies in the ME/CFS group were 0.55 (CC), 0.25 (TC) and 0.2 (TT); and 0.636 (CC), 0.364 (TC), and 0 (TT) in the HC group. GSH levels: There was a trend-level lower mean OCC GSH in ME/CFS than in HC (0.0015 vs 0.0017; p = 0.076). GSH levels by genotype group interaction: Within the ME/CFS group but not in the combined ME/CFS and HC group or HC group alone, GSH levels were lower in the TC and TT genotypes than in CC genotypes (0.00143 vs 0.00164; p = 0.018).

DISCUSSION/SIGNIFICANCE: This study found that the presence of a C>T SNP in GPX1 is associated with lower mean GSH levels and, hence, brain oxidative stress, in ME/CFS patients. If validated in a larger cohort, this finding may support targeted antioxidant therapy based on their genotype as a potentially effective treatment for patients with ME/CFS.

Source: Hampilos, N., Germain, A., Mao, X., Hanson, M., & Shungu, D. (2023). 474 Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical and Translational Science, 7(S1), 137-138. doi:10.1017/cts.2023.488. DOI: https://doi.org/10.1017/cts.2023.488

Single-cell transcriptomics of the immune system in ME/CFS at baseline and following symptom provocation

Summary:

ME/CFS is a serious and poorly understood disease. To understand immune dysregulation in ME/CFS, we used single-cell RNA-seq (scRNA-seq) to examine immune cells in cohorts of patients and controls. Post-exertional malaise (PEM), an exacerbation of symptoms following strenuous exercise, is a characteristic symptom of ME/CFS. Thus, to detect changes coincident with PEM, we also performed scRNA-seq on the same cohorts following exercise. At baseline, ME/CFS patients displayed dysregulation of classical monocytes suggestive of inappropriate differentiation and migration to tissue. We were able to identify both diseased and more normal monocytes within patients, and the fraction of diseased cells correlated with metrics of disease severity. Comparing the transcriptome at baseline and post-exercise challenge, we discovered patterns indicative of improper platelet activation in patients, with minimal changes elsewhere in the immune system. Taken together, these data identify immunological defects present at baseline in patients and an additional layer of dysregulation following exercise.

Highlights ME/CFS is a debilitating disease with unknown causes. Here, we provide, for the first time, an extensive single cell resolution dataset detailing the gene expression programs of circulating immune cells of ME/CFS cases at baseline and after symptom provocation. We were able to detect robust dysregulation in certain immune cells from patients, with dysregulation of classical monocytes manifesting the strongest signal. Indeed, the fraction of aberrant monocytes in ME/CFS patients correlated with the degree of disease severity. Surprisingly, platelet transcriptomes were also altered in ME/CFS, and they were the only component of the immune system that showed large-scale changes following symptom provocation.

Source: Faraz AhmedLuyen Tien VuHongya ZhuDavid Shing Huk IuElizabeth A. FogartyYeonui KwakWeizhong ChenCarl J. FranconiPaul R. MunnSusan M. LevineJared StevensXiangling MaoDikoma C. ShunguGeoffrey E. MooreBetsy A. KellerMaureen R. HansonJennifer K. GrenierAndrew Grimson. Single-cell transcriptomics of the immune system in ME/CFS at baseline and following symptom provocation.

Survey of Anti-Pathogen Antibody Levels in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Infectious pathogens are implicated in the etiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) because of the occurrence of outbreaks of the disease. While a number of different infectious agents have been associated with the onset of ME/CFS, the identity of a specific organism has been difficult to determine in individual cases. The aim of our study is to survey ME/CFS subjects for evidence of an infectious trigger and/or evidence of immune dysregulation via serological testing of plasma samples for antibodies to 122 different pathogen antigens.
Immune profiles were compared to age-, sex-, and BMI-matched controls to provide a basis for comparison. Antibody levels to individual antigens surveyed in this study do not implicate any one of the pathogens in ME/CFS, nor do they rule out common pathogens that frequently infect the US population. However, our results revealed sex-based differences in steady-state humoral immunity, both within the ME/CFS cohort and when compared to trends seen in the healthy control cohort.
Source: O’Neal AJ, Glass KA, Emig CJ, Vitug AA, Henry SJ, Shungu DC, Mao X, Levine SM, Hanson MR. Survey of Anti-Pathogen Antibody Levels in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Proteomes. 2022; 10(2):21. https://doi.org/10.3390/proteomes10020021 https://www.mdpi.com/2227-7382/10/2/21/htm (Full text)

Plasma metabolomics reveals disrupted response and recovery following maximal exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Post-exertional malaise (PEM) is a hallmark symptom of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We monitored the evolution of 1,157 plasma metabolites in 60 ME/CFS cases (45 females, 15 males) and in 45 matched healthy control subjects (30 females, 15 males) before and after two maximal Cardiopulmonary Exercise Test (CPET) challenges separated by 24 hours, with the intent of provoking PEM in patients. Four timepoints allowed exploration of the metabolic response to maximal energy-producing capacity and the recovery pattern of ME/CFS cases compared to the healthy control group.

Baseline comparison identified several significantly different metabolites, along with an enriched percentage of yet-to-be identified compounds. Additionally, temporal measures demonstrated an increased metabolic disparity between cohorts, including unknown metabolites. The effects of exertion in the ME/CFS cohort predominantly highlighted lipid- as well as energy-related pathways and chemical structure clusters, which were disparately affected by the first and second exercise sessions.

The 24-hour recovery period was distinct in the ME/CFS cohort, with over a quarter of the identified pathways statistically different. The pathways that are uniquely different 24 hours after an exercise challenge provide clues to metabolic disruptions that lead to PEM. Numerous altered pathways were observed to depend on glutamate metabolism, a crucial component to the homeostasis of many organs in the body, including the brain.

Source: Germain A, Giloteaux L, Moore GE, Levine SM, Chia JK, Keller BA, Stevens J, Franconi CJ, Mao X, Shungu DC, Grimson A, Hanson MR. Plasma metabolomics reveals disrupted response and recovery following maximal exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. JCI Insight. 2022 Mar 31:e157621. doi: 10.1172/jci.insight.157621. Epub ahead of print. PMID: 35358096. https://pubmed.ncbi.nlm.nih.gov/35358096/

Elevations of Ventricular Lactate Levels Occur in Both Chronic Fatigue Syndrome and Fibromyalgia

Abstract:

Background: Chronic fatigue syndrome (CFS) and fibromyalgia (FM) frequently have overlapping symptoms, leading to the suggestion that the same disease processes may underpin the two disorders – the unitary hypothesis. However, studies investigating the two disorders have reported substantial clinical and/or biological differences them, suggesting distinct pathophysiological underpinnings.

Purpose: The purpose of this study was to further add to the body of evidence favoring different disease processes in CFS and FM by comparing ventricular cerebrospinal fluid lactate levels among patients with CFS alone, FM alone, overlapping CFS and FM symptoms, and healthy control subjects.

Methods: Ventricular lactate was assessed in vivo with proton magnetic resonance spectroscopic imaging (1H MRSI) with the results normed across the 2 studies in which the data were collected.

Results: Mean CSF lactate levels in CFS, FM and CFS+FM did not differ among the three groups, but were all significantly higher than the mean values for control subjects.

Conclusion: While patients with CFS, FM and comorbid CFS and FM can be differentiated from healthy subjects based on measures of CFS lactate, this neuroimaging outcome measure is not a viable biomarker for differentiating CFS from FM or from patients in whom symptoms of the two disorders overlap.

Source: Natelson BH, Vu D, Coplan JD, Mao X, Blate M, Kang G, Soto E, Kapusuz T, Shungu DC. Elevations of Ventricular Lactate Levels Occur in Both Chronic Fatigue Syndrome and Fibromyalgia. Fatigue. 2017;5(1):15-20. doi: 10.1080/21641846.2017.1280114. Epub 2017 Feb 20.  https://www.ncbi.nlm.nih.gov/pubmed/29308330 

 

Multimodal and simultaneous assessments of brain and spinal fluid abnormalities in chronic fatigue syndrome and the effects of psychiatric comorbidity

Abstract:

The purpose of this study was to investigate whether CFS patients without comorbid psychiatric diagnoses differ from CFS patients with comorbid psychiatric diagnoses and healthy control subjects in neuropsychological performance, the proportion with elevated spinal fluid protein or white cell counts, cerebral blood flow (CBF), brain ventricular lactate and cortical glutathione (GSH). The results of the study did not show any differences in any of the outcome measures between CFS patients with and without psychiatric comorbidity, thus indicating that psychiatric status may not be an exacerbating factor in CFS.

Importantly, significant differences were found between the pooled samples of CFS compared to controls. These included lower GSH and CBF and higher ventricular lactate and rates of spinal fluid abnormalities in CFS patients compared to healthy controls. Thirteen of 26 patients had abnormal values on two or more of these 4 brain-related variables.

These findings, which replicate the results of several of our prior studies, support the presence of a number of neurobiological and spinal fluid abnormalities in CFS. These results will lead to further investigation into objective biomarkers of the disorder to advance the understanding of CFS.

Copyright © 2017 Elsevier B.V. All rights reserved.

 

Source: Natelson BH, Mao X, Stegner AJ, Lange G, Vu D, Blate M, Kang G, Soto E, Kapusuz T, Shungu DC. Multimodal and simultaneous assessments of brain and spinal fluid abnormalities in chronic fatigue syndrome and the effects of psychiatric comorbidity. J Neurol Sci. 2017 Apr 15;375:411-416. doi: 10.1016/j.jns.2017.02.046. Epub 2017 Feb 22. https://www.ncbi.nlm.nih.gov/pubmed/28320179

 

Effect of Milnacipran Treatment on Ventricular Lactate in Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Trial

Abstract:

Milnacipran, a serotonin/norepinephrine reuptake inhibitor, has been approved by the US Food and Drug Administration for the treatment of fibromyalgia (FM). This report presents the results of a randomized, double-blind, placebo-controlled trial of milnacipran conducted to test the hypotheses that a) similar to patients with chronic fatigue syndrome, patients with FM have increased ventricular lactate levels at baseline; b) 8 weeks of treatment with milnacipran will lower ventricular lactate levels compared with baseline levels and with ventricular lactate levels after placebo; and c) treatment with milnacipran will improve attention and executive function in the Attention Network Test compared with placebo. In addition, we examined the results for potential associations between ventricular lactate and pain. Baseline ventricular lactate measured by proton magnetic resonance spectroscopic imaging was found to be higher in patients with FM than in healthy controls (F1,37 = 22.11, P < .0001, partial η(2) = .37). Milnacipran reduced pain in patients with FM relative to placebo but had no effect on cognitive processing.

At the end of the study, ventricular lactate levels in the milnacipran-treated group had decreased significantly compared with baseline and after placebo (F1,18 = 8.18, P = .01, partial η(2) = .31). A significantly larger proportion of patients treated with milnacipran showed decreases in both ventricular lactate and pain than those treated with placebo (P = .03). These results suggest that proton magnetic resonance spectroscopic imaging measurements of lactate may serve as a potential biomarker for a therapeutic response in FM and that milnacipran may act, at least in part, by targeting the brain response to glial activation and neuroinflammation.

PERSPECTIVE: Patients treated with milnacipran showed decreases in both pain and ventricular lactate levels compared with those treated with placebo, but, even after treatment, levels of ventricular lactate remained higher than in controls. The hypothesized mechanism for these decreases is via drug-induced reductions of a central inflammatory state.

TRIAL REGISTRATION: ClinicalTrials.gov NCT01108731.

Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

 

Source: Natelson BH, Vu D, Mao X, Weiduschat N, Togo F, Lange G, Blate M, Kang G, Coplan JD, Shungu DC. Effect of Milnacipran Treatment on Ventricular Lactate in Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Trial. J Pain. 2015 Nov;16(11):1211-9. doi: 10.1016/j.jpain.2015.08.004. Epub 2015 Aug 31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4630071/ (Full article)

 

Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology

Abstract:

Chronic fatigue syndrome (CFS) is a complex illness, which is often misdiagnosed as a psychiatric illness. In two previous reports, using (1)H MRSI, we found significantly higher levels of ventricular cerebrospinal fluid (CSF) lactate in patients with CFS relative to those with generalized anxiety disorder and healthy volunteers (HV), but not relative to those with major depressive disorder (MDD). In this third independent cross-sectional neuroimaging study, we investigated a pathophysiological model which postulated that elevations of CSF lactate in patients with CFS might be caused by increased oxidative stress, cerebral hypoperfusion and/or secondary mitochondrial dysfunction.

Fifteen patients with CFS, 15 with MDD and 13 HVs were studied using the following modalities: (i) (1)H MRSI to measure CSF lactate; (ii) single-voxel (1)H MRS to measure levels of cortical glutathione (GSH) as a marker of antioxidant capacity; (iii) arterial spin labeling (ASL) MRI to measure regional cerebral blood flow (rCBF); and (iv) (31)P MRSI to measure brain high-energy phosphates as objective indices of mitochondrial dysfunction.

We found elevated ventricular lactate and decreased GSH in patients with CFS and MDD relative to HVs. GSH did not differ significantly between the two patient groups. In addition, we found lower rCBF in the left anterior cingulate cortex and the right lingual gyrus in patients with CFS relative to HVs, but rCBF did not differ between those with CFS and MDD. We found no differences between the three groups in terms of any high-energy phosphate metabolites.

In exploratory correlation analyses, we found that levels of ventricular lactate and cortical GSH were inversely correlated, and significantly associated with several key indices of physical health and disability. Collectively, the results of this third independent study support a pathophysiological model of CFS in which increased oxidative stress may play a key role in CFS etiopathophysiology.

Copyright © 2012 John Wiley & Sons, Ltd.

 

Source: Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP, Medow MS, Natelson BH, Stewart JM, Mathew SJ. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed. 2012 Sep;25(9):1073-87. doi: 10.1002/nbm.2772. Epub 2012 Jan 27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896084/ (Full article)

 

Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder

Abstract:

Chronic fatigue syndrome (CFS), a complex illness characterized by fatigue, impaired concentration, and musculoskeletal pain, is often misdiagnosed as a psychiatric illness due to the overlap of its symptoms with mood and anxiety disorders. Using proton magnetic resonance spectroscopic imaging ((1)H MRSI), we previously measured levels of the major brain metabolites in CFS, in generalized anxiety disorder (GAD), and in healthy control subjects, and found significantly higher levels of ventricular cerebrospinal fluid (CSF) lactate in CFS compared to the other two groups.

In the present study, we sought to assess the specificity of this observation for CFS by comparing ventricular lactate levels in a new cohort of 17 CFS subjects with those in 19 healthy volunteers and in 21 subjects with major depressive disorder (MDD), which, like GAD, is a neuropsychiatric disorder that has significant symptom overlap with CFS.

Ventricular CSF lactate was significantly elevated in CFS compared to healthy volunteers, replicating the major result of our previous study. Ventricular lactate measures in MDD did not differ from those in either CFS or healthy volunteers. We found a significant correlation between ventricular CSF lactate and severity of mental fatigue that was specific to the CFS group.

In an exploratory analysis, we did not find evidence for altered levels of the amino acid neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate + glutamine (‘Glx’), in CFS compared to MDD or healthy controls. Future (1)H MRS studies with larger sample sizes and well-characterized populations will be necessary to further clarify the sensitivity and specificity of neurometabolic abnormalities in CFS and MDD.

 

Source: Murrough JW, Mao X, Collins KA, Kelly C, Andrade G, Nestadt P, Levine SM, Mathew SJ, Shungu DC. Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder. NMR Biomed. 2010 Jul;23(6):643-50. doi: 10.1002/nbm.1512. https://www.ncbi.nlm.nih.gov/pubmed/20661876