Advocating the role of trained immunity in the pathogenesis of ME/CFS: a mini review

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic disease of which the underlying (molecular) mechanisms are mostly unknown. An estimated 0.89% of the global population is affected by ME/CFS. Most patients experience a multitude of symptoms that severely affect their lives. These symptoms include post-exertional malaise, chronic fatigue, sleep disorder, impaired cognitive functions, flu-like symptoms, and chronic immune activation. Therapy focusses on symptom management, as there are no drugs available. Approximately 60% of patients develop ME/CFS following an acute infection.

Such a preceding infection may induce a state of trained immunity; defined as acquired, nonspecific, immunological memory of innate immune cells. Trained immune cells undergo long term epigenetic reprogramming, which leads to changes in chromatin accessibility, metabolism, and results in a hyperresponsive phenotype. Initially, trained immunity has only been demonstrated in peripheral blood monocytes and macrophages. However, more recent findings indicate that hematopoietic stem cells in the bone marrow are required for long-term persistence of trained immunity. While trained immunity is beneficial to combat infections, a disproportionate response may cause disease.

We hypothesize that pronounced hyperresponsiveness of innate immune cells to stimuli could account for the aberrant activation of various immune pathways, thereby contributing to the pathophysiology of ME/CFS. In this mini review, we elaborate on the concept of trained immunity as a factor involved in the pathogenesis of ME/CFS by presenting evidence from other post-infectious diseases with symptoms that closely resemble those of ME/CFS.

Source: Humer B, Dik WA, Versnel MA. Advocating the role of trained immunity in the pathogenesis of ME/CFS: a mini review. Front Immunol. 2025 Mar 25;16:1483764. doi: 10.3389/fimmu.2025.1483764. PMID: 40201181; PMCID: PMC11975576. https://pmc.ncbi.nlm.nih.gov/articles/PMC11975576/ (Full text)

Dysregulation of lipid metabolism, energy production, and oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome, Gulf War Syndrome and fibromyalgia

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Syndrome (GWS), and Fibromyalgia (FM) are complex, chronic illnesses with overlapping clinical features. Symptoms that are reported across these conditions include post-exertional malaise (PEM), fatigue, and pain, yet the etiology of these illnesses remains largely unknown. Diagnosis is challenging in patients with these conditions as definitive biomarkers are lacking; patients are required to meet clinical criteria and often undergo lengthy testing to exclude other conditions, a process that is often prolonged, costly, and burdensome for patients.

The identification of reliable validated biomarkers could facilitate earlier and more accurate diagnosis and drive the development of targeted pharmacological therapies that might address the underlying pathophysiology of these diseases. Major driving forces for biomarker identification are the advancing fields of metabolomics and proteomics that allow for comprehensive characterization of metabolites and proteins in biological specimens. Recent technological developments in these areas enable high-throughput analysis of thousands of metabolites and proteins from a variety of biological samples and model systems, that provides a powerful approach to unraveling the metabolic phenotypes associated with these complex diseases.

Emerging evidence suggests that ME/CFS, GWS, and FM are all characterized by disturbances in metabolic pathways, particularly those related to energy production, lipid metabolism, and oxidative stress. Altered levels of key metabolites in these pathways have been reported in studies highlighting potential common biochemical abnormalities. The precise mechanisms driving altered metabolic pathways in ME/CFS, GWS, and FM remain to be elucidated; however, the elevated oxidative stress observed across these illnesses may contribute to symptoms and offer a potential target for therapeutic intervention.

Investigating the mechanisms, and their role in the disease process, could provide insights into disease pathogenesis and reveal novel treatment targets. As such, comprehensive metabolomic and proteomic analyses are crucial for advancing the understanding of these conditions in-order to identify both common, and unique, metabolic alterations that could serve as diagnostic markers or therapeutic targets.

Source: Davis L, Higgs M, Snaith A, Lodge TA, Strong J, Espejo-Oltra JA, Kujawski S, Zalewski P, Pretorius E, Hoerger M, Morten KJ. Dysregulation of lipid metabolism, energy production, and oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome, Gulf War Syndrome and fibromyalgia. Front Neurosci. 2025 Mar 10;19:1498981. doi: 10.3389/fnins.2025.1498981. PMID: 40129725; PMCID: PMC11931034. https://pmc.ncbi.nlm.nih.gov/articles/PMC11931034/ (Full text)

Unravelling the Connection Between Energy Metabolism and Immune Senescence/Exhaustion in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease, characterized by a diverse array of symptoms including post-exertional malaise (PEM), severe fatigue, and cognitive impairments, all of which drastically diminish the patients’ quality of life. Despite its impact, no curative treatments exist, largely due to the limited understanding of the disease’s underlying pathophysiology.
Mitochondrial dysfunction, leading to impaired energy production and utilization, is believed to play a key role in the onset of fatigue and PEM, positioning it as a potential key pathophysiological mechanism underlying ME/CFS. Additionally, the disorder shows similarities to chronic viral infections, with frequent reports of immune system alterations, suggesting a critical role for immune (dys)functioning. In particular, the roles of immune senescence and immune exhaustion—two fundamental immune states—remain poorly understood in ME/CFS.
This state-of-the-art review explores how metabolic dysfunction and immune dysfunction may be interconnected in ME/CFS, proposing that energy deficits may directly impair immune function. By examining this metabolic–immune interplay, this review highlights potential pathways for developing innovative therapeutic strategies that target both energy metabolism and immune regulation, offering hope for improving patient outcomes.
Source: Van Campenhout J, Buntinx Y, Xiong H-Y, Wyns A, Polli A, Nijs J, Aerts JL, Laeremans T, Hendrix J. Unravelling the Connection Between Energy Metabolism and Immune Senescence/Exhaustion in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomolecules. 2025; 15(3):357. https://doi.org/10.3390/biom15030357 https://www.mdpi.com/2218-273X/15/3/357 (Full text)

Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

ME/CFS is a debilitating multisystem disorder of unclear etiology that affects many individuals worldwide. One of its hallmark symptoms is prolonged fatigue following exertion, a feature also observed in long COVID, suggesting an underlying dysfunction in energy production in both conditions. Here, mitochondrial dysfunction and its potential pathogenetic role in these disorders are reviewed.

Source: Syed AM, Karius AK, Ma J, Wang PY, Hwang PM. Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Physiology (Bethesda). 2025 Feb 17. doi: 10.1152/physiol.00056.2024. Epub ahead of print. PMID: 39960432. https://journals.physiology.org/doi/abs/10.1152/physiol.00056.2024 (Full text available as PDF file)

Dietary Supplementation for Fatigue Symptoms in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)-A Systematic Review

Abstract:

Background/Objectives: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex neuroimmunological disorder with limited treatment options. Despite the widespread use of Dietary Supplements (DSs) among ME/CFS patients to alleviate fatigue and associated symptoms, evidence remains inconclusive. This systematic review aims to provide an updated synthesis of the efficacy of DS interventions and explore possible mechanisms underlying their therapeutic effects.

Methods: This systematic review was conducted according to PRISMA guidelines. Several databases (Ebsco Host, PubMed, Scopus, Google Scholar) were used for the systematic search, which was based on the broad search terms ME/CFS and DS with a focus on publications between 1994 and 2024. The primary outcome was fatigue, with additional considerations including psychological well-being, physical activity, and biochemical markers. Two independent researchers screened the studies for eligibility in a multi-stage process and assessed quality and bias using Cochrane’s risk of bias tools (RoB-2, ROBINS-I).

Results: Fourteen studies (N = 809) of heterogeneous designs were included, showing a high risk of bias, mostly due to missing data and selection bias. While some interventions (L-carnitine and guanidinoacetic acid, oxaloacetate, CoQ10-selenium combination, NADH and NADH-CoQ10 combination) showed significant reductions in fatigue, methodological limitations, like small sample sizes and missing data, prevent firm conclusions. Mixed results were reported for secondary outcomes like cognitive function and inflammatory markers. Six studies noted adverse effects, including nausea and insomnia.

Conclusions: Though some DSs showed potential in reducing fatigue in ME/CFS, methodological limitations and inconsistent results hinder definitive conclusions. Future research should improve diagnostic criteria and include more diverse populations.

Source: Dorczok MC, Mittmann G, Mossaheb N, Schrank B, Bartova L, Neumann M, Steiner-Hofbauer V. Dietary Supplementation for Fatigue Symptoms in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)-A Systematic Review. Nutrients. 2025 Jan 28;17(3):475. doi: 10.3390/nu17030475. PMID: 39940333; PMCID: PMC11819863. https://pmc.ncbi.nlm.nih.gov/articles/PMC11819863/ (Full text)

Language Matters: What Not to Say to Patients with Long COVID, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, and Other Complex Chronic Disorders

Abstract:

People with Long COVID, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and other complex chronic disorders consistently report having difficulty obtaining effective and compassionate medical care and being disbelieved, judged, gaslighted, and even dismissed by healthcare professionals. We believe that these adversarial interactions and language are more likely to arise when healthcare professionals are confronting complex chronic illnesses without proper training, diagnostic biomarkers, or FDA-approved therapies.
These problematic conversations between practitioners and patients often involve specific words and phrases—termed the “never-words”—can leave patients in significant emotional distress and negatively impact the clinician–patient relationship and recovery. Seeking to prevent these destructive interactions, we review key literature on best practices for difficult clinical conversations and discuss the application of these practices for people with Long COVID, ME/CFS, dysautonomia, and other complex chronic disorders. We provide recommendations for alternative, preferred phrasing to the never-words, which can enhance therapeutic relationship and chronic illness patient care via compassionate, encouraging, and non-judgmental language.
Source: Smyth NJ, Blitshteyn S. Language Matters: What Not to Say to Patients with Long COVID, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, and Other Complex Chronic Disorders. International Journal of Environmental Research and Public Health. 2025; 22(2):275. https://doi.org/10.3390/ijerph22020275 https://www.mdpi.com/1660-4601/22/2/275 (Full text)

The Microbiota-Gut-Brain Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Narrative Review of an Emerging Field

Abstract:

The intricate relationship between gut microbiota and the brain has emerged as a pivotal area of research, particularly in understanding myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This complex condition is characterized by debilitating fatigue, cognitive dysfunction, and a wide array of systemic manifestations, posing significant challenges for diagnosis and treatment. Recent studies highlight the microbiota-gut-brain axis as a crucial pathway in ME/CFS pathophysiology, suggesting that alterations in gut microbial composition may impact immune responses, neurochemical signaling, and neuronal health.

This narrative review systematically explores English-language scholarly articles from January 1995 to January 2025, utilizing databases such as PubMed, Scopus, and Web of Science. The findings underscore the potential for targeted therapeutic interventions aimed at correcting gut dysbiosis. As research progresses, a deeper understanding of the microbiota-gut-brain connection could lead to innovative approaches for managing ME/CFS, ultimately enhancing the quality of life for affected individuals.

Source: El-Sehrawy AAMA, Ayoub II, Uthirapathy S, Ballal S, Gabble BC, Singh A, V K, Panigrahi R, Kamali M, Khosravi M. The Microbiota-Gut-Brain Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Narrative Review of an Emerging Field. Eur J Transl Myol. 2025 Feb 12. doi: 10.4081/ejtm.2025.13690. Epub ahead of print. PMID: 39937103. https://pubmed.ncbi.nlm.nih.gov/39937103/

Cerebral Blood Flow in Orthostatic Intolerance

Abstract:

Cerebral blood flow (CBF) is vital for delivering oxygen and nutrients to the brain. Many forms of orthostatic intolerance (OI) involve impaired regulation of CBF in the upright posture, which results in disabling symptoms that decrease quality of life. Because CBF is not easy to measure, rises in heart rate or drops in blood pressure are used as proxies for abnormal CBF. These result in diagnoses such as postural orthostatic tachycardia syndrome and orthostatic hypotension. However, in many other OI syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and long COVID, heart rate and blood pressure are frequently normal despite significant drops in CBF. This often leads to the incorrect conclusion that there is nothing hemodynamically abnormal in these patients and thus no explanation or treatment is needed. There is a need to measure CBF, as orthostatic hypoperfusion is the shared pathophysiology for all forms of OI. In this review, we examine the literature studying CBF dysfunction in various syndromes with OI and evaluate methods of measuring CBF including transcranial Doppler ultrasound, extracranial cerebral blood flow ultrasound, near infrared spectroscopy, and wearable devices.

Source: Khan MS, Miller AJ, Ejaz A, Molinger J, Goyal P, MacLeod DB, Swavely A, Wilson E, Pergola M, Tandri H, Mills CF, Raj SR, Fudim M. Cerebral Blood Flow in Orthostatic Intolerance. J Am Heart Assoc. 2025 Feb 3:e036752. doi: 10.1161/JAHA.124.036752. Epub ahead of print. PMID: 39895557. https://www.ahajournals.org/doi/10.1161/JAHA.124.036752 (Full text)

Tetrahydrobiopterin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Friend or Foe?

Abstract:

Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (ME/CFS) is a chronic multisystem disease characterized by severe muscle fatigue, pain, dizziness, and brain fog. The two most common symptoms are post-exertional malaise (PEM) and orthostatic intolerance (OI). ME/CFS patients with OI (ME+OI) suffer from dizziness or faintness due to a sudden drop in blood pressure while maintaining an upright posture. Clinical research has demonstrated that patients with OI display severe cardiovascular abnormalities resulting in reduced effective blood flow in the cerebral blood vessels. However, despite intense investigation, it is not known why the effective cerebral blood flow is reduced in OI patients. Based on our recent findings, we observed that tetrahydrobiopterin (BH4) metabolism was highly dysregulated in ME+OI patients. In the current review article, we attempted to summarize our recent findings on BH4 metabolism to shed light on the molecular mechanisms of OI.

Source: Rahman AFMT, Benko A, Bulbule S, Gottschalk CG, Arnold LA, Roy A. Tetrahydrobiopterin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Friend or Foe? Biomolecules. 2025 Jan 10;15(1):102. doi: 10.3390/biom15010102. PMID: 39858496; PMCID: PMC11763651. https://pmc.ncbi.nlm.nih.gov/articles/PMC11763651/ (Full text)

Machine learning and multi-omics in precision medicine for ME/CFS

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition’s heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.

In this review, we explore how machine learning and multi-omics (genomics, transcriptomics, proteomics, and metabolomics) can transform precision medicine in ME/CFS research and healthcare. We provide an overview on machine learning concepts for analysing large-scale biological data, highlight key advancements in multi-omics biomarker discovery, data quality and integration strategies, while reflecting on ME/CFS case study examples. We also highlight several priorities, including the critical need for applying robust computational tools and collaborative data-sharing initiatives in the endeavour to unravel the biological intricacies of ME/CFS.

Source: Huang K, Lidbury BA, Thomas N, Gooley PR, Armstrong CW. Machine learning and multi-omics in precision medicine for ME/CFS. J Transl Med. 2025 Jan 14;23(1):68. doi: 10.1186/s12967-024-05915-z. PMID: 39810236. Huang K, Lidbury BA, Thomas N, Gooley PR, Armstrong CW. Machine learning and multi-omics in precision medicine for ME/CFS. J Transl Med. 2025 Jan 14;23(1):68. doi: 10.1186/s12967-024-05915-z. PMID: 39810236. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05915-z (Full text)