Individualizing medical treatment in chronic fatigue syndrome/ myalgic encephalomyelitis: Evidence for effective medications and possible relevance to “Long-Hauler Syndrome” in Covid-19 affected patients

Abstract:

Large controlled studies of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) have shown no effective medical treatment for this disorder. There are individual patients, however, with dramatic responses to some medications.

We report two patients with clear responses to rintatolimod and galantamine characterized by rapid reduction of symptoms on starting treatment and return of symptoms on withdrawal.

As in cancer, CFS/ME is a heterogeneous disorder but unlike most cancers, such as melanoma, breast cancer, and B-cell lymphoma, CFS/ME has no known biological marker that can distinguish between subtypes.

We suggest an approach to medical treatment of CFS/ME that could be utilized by primary caregivers that offer the possibility of more rapid and complete recovery from this debilitating disorder.

Current studies indicate that prolonged symptomatic recovery from infection with Covid-19 (“long hauler syndrome” or PASC, for post-acute sequelae of Covid-19) represents a severe form of CFS/ME and thus may also be amenable to personalized medicine with specific medications.

Source: Levine PH, Ajmera KM, Bjorke B, Peterson D. Individualizing medical treatment in chronic fatigue syndrome/myalgic
encephalomyelitis: Evidence for effective medications and possible relevance to “Long-Hauler Syndrome” in Covid-19 affected
patients. J Clin Images Med Case Rep. 2022; 3(1): 1681. https://jcimcr.org/pdfs/JCIMCR-v3-1681.pdf (Full text)

 

Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease.

Methods: Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls.

Results: In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873).

Conclusion: Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS.

One sentence summary: Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.

Source: Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. medRxiv [Preprint]. 2022 Jan 11:2021.06.14.21258895. doi: 10.1101/2021.06.14.21258895. PMID: 35043127; PMCID: PMC8764736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764736/ (Full text)

Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms

Abstract:

Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, debilitating disease of unknown cause for which there is no specific therapy. Patients suffering from ME/CFS commonly experience persistent fatigue, post-exertional malaise, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever and irritable bowel syndrome (IBS). Recent evidence implicates gut microbiome dysbiosis in ME/CFS. However, most prior studies are limited by small sample size, differences in clinical criteria used to define cases, limited geographic sampling, reliance on bacterial culture or 16S rRNA gene sequencing, or insufficient consideration of confounding factors that may influence microbiome composition. In the present study, we evaluated the fecal microbiome in the largest prospective, case-control study to date (n=106 cases, n=91 healthy controls), involving subjects from geographically diverse communities across the United States.

Results Using shotgun metagenomics and qPCR and rigorous statistical analyses that controlled for important covariates, we identified decreased relative abundance and quantity of FaecalibacteriumRoseburia, and Eubacterium species and increased bacterial load in feces of subjects with ME/CFS. These bacterial taxa play an important role in the production of butyrate, a multifunctional bacterial metabolite that promotes human health by regulating energy metabolism, inflammation, and intestinal barrier function. Functional metagenomic and qPCR analyses were consistent with a deficient microbial capacity to produce butyrate along the acetyl-CoA pathway in ME/CFS. Metabolomic analyses of short-chain fatty acids (SCFAs) confirmed that fecal butyrate concentration was significantly reduced in ME/CFS. Further, we found that the degree of deficiency in butyrate-producing bacteria correlated with fatigue symptom severity among ME/CFS subjects. Finally, we provide evidence that IBS comorbidity is an important covariate to consider in studies investigating the microbiome of ME/CFS subjects, as differences in microbiota alpha diversity, some bacterial taxa, and propionate were uniquely associated with self-reported IBS diagnosis.

Conclusions Our findings indicate that there is a core deficit in the butyrate-producing capacity of the gut microbiome in ME/CFS subjects compared to healthy controls. The relationships we observed among symptom severity and these gut microbiome disturbances may be suggestive of a pathomechanistic linkage, however, additional research is warranted to establish any causal relationship. These findings provide support for clinical trials that explore the utility of dietary, probiotic and prebiotic interventions to boost colonic butyrate production in ME/CFS.

Source: Cheng Guo, Xiaoyu Che, Thomas Briese, Orchid Allicock, Rachel A. Yates, Aaron Cheng, Amit Ranjan, Dana March, Mady Hornig, Anthony L. Komaroff, Susan Levine, Lucinda Bateman, Suzanne D. Vernon, Nancy G. Klimas, Jose G. Montoya, Daniel L. Peterson, W. Ian Lipkin, Brent L. Williams. Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms. medRxiv 2021.10.27.21265575; doi: https://doi.org/10.1101/2021.10.27.21265575 https://www.medrxiv.org/content/10.1101/2021.10.27.21265575v1?fbclid=IwAR16pb6by73xZx5lZM3j-5dOc_YT2JapILaRS-DcUZj5EHZxnoSa2fAAIuE (Full text available to download)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Essentials of diagnosis and management

Abstract:

Despite myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) affecting millions of people worldwide, many clinicians lack the knowledge to appropriately diagnose or manage ME/CFS. Unfortunately, clinical guidance has been scarce, obsolete, or potentially harmful. Consequently, up to 91% of patients in the United States remain undiagnosed, and those diagnosed often receive inappropriate treatment. These problems are of increasing importance because after acute COVID-19, a significant percentage of people remain ill for many months with an illness similar to ME/CFS.
In 2015, the US National Academy of Medicine published new evidence-based clinical diagnostic criteria that have been adopted by the US Centers for Disease Control and Prevention. Furthermore, the United States and other governments as well as major health care organizations have recently withdrawn graded exercise and cognitive-behavioral therapy as the treatment of choice for patients with ME/CFS. Recently, 21 clinicians specializing in ME/CFS convened to discuss best clinical practices for adults affected by ME/CFS.
This article summarizes their top recommendations for generalist and specialist health care providers based on recent scientific progress and decades of clinical experience. There are many steps that clinicians can take to improve the health, function, and quality of life of those with ME/CFS, including those in whom ME/CFS develops after COVID-19. Patients with a lingering illness that follows acute COVID-19 who do not fully meet criteria for ME/CFS may also benefit from these approaches.
Source: Lucinda Bateman, MD, Alison C. Bested, MD, Hector F. Bonilla, MD, Ilene S. Ruhoy, MD, PhD, Maria A. Vera-Nunez, MD, MSBI, Brayden P. Yellman, MD et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Essentials of Diagnosis and Management. Mayo Clinic Proceedings. Open Access. Published:August 25, 2021DOI:https://doi.org/10.1016/j.mayocp.2021.07.004 https://www.mayoclinicproceedings.org/article/S0025-6196(21)00513-9/fulltext (Full text)

Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics

Abstract:

The pathogenesis of ME/CFS, a disease characterized by fatigue, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever, irritable bowel syndrome (IBS), and lymphadenopathy, is poorly understood.

We report biomarker discovery and topological analysis of plasma metabolomic, fecal bacterial metagenomic, and clinical data from 50 ME/CFS patients and 50 healthy controls. We confirm reports of altered plasma levels of choline, carnitine and complex lipid metabolites and demonstrate that patients with ME/CFS and IBS have increased plasma levels of ceramide.

Integration of fecal metagenomic and plasma metabolomic data resulted in a stronger predictive model of ME/CFS (cross-validated AUC = 0.836) than either metagenomic (cross-validated AUC = 0.745) or metabolomic (cross-validated AUC = 0.820) analysis alone. Our findings may provide insights into the pathogenesis of ME/CFS and its subtypes and suggest pathways for the development of diagnostic and therapeutic strategies.

Source: Dorottya Nagy-Szakal, Dinesh K. Barupal, Bohyun Lee, Xiaoyu Che, Brent L. Williams, Ellie J. R. Kahn, Joy E. Ukaigwe, Lucinda Bateman, Nancy G. Klimas, Anthony L. Komaroff, Susan Levine, Jose G. Montoya, Daniel L. Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn & W. Ian Lipkin . Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific Reports, volume 8, Article number: 10056 (2018) https://www.nature.com/articles/s41598-018-28477-9 (Full article)

Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome

 

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by unexplained persistent fatigue, commonly accompanied by cognitive dysfunction, sleeping disturbances, orthostatic intolerance, fever, lymphadenopathy, and irritable bowel syndrome (IBS). The extent to which the gastrointestinal microbiome and peripheral inflammation are associated with ME/CFS remains unclear. We pursued rigorous clinical characterization, fecal bacterial metagenomics, and plasma immune molecule analyses in 50 ME/CFS patients and 50 healthy controls frequency-matched for age, sex, race/ethnicity, geographic site, and season of sampling.

Results: Topological analysis revealed associations between IBS co-morbidity, body mass index, fecal bacterial composition, and bacterial metabolic pathways but not plasma immune molecules. IBS co-morbidity was the strongest driving factor in the separation of topological networks based on bacterial profiles and metabolic pathways. Predictive selection models based on bacterial profiles supported findings from topological analyses indicating that ME/CFS subgroups, defined by IBS status, could be distinguished from control subjects with high predictive accuracy. Bacterial taxa predictive of ME/CFS patients with IBS were distinct from taxa associated with ME/CFS patients without IBS.

Increased abundance of unclassified Alistipes and decreased Faecalibacterium emerged as the top biomarkers of ME/CFS with IBS; while increased unclassified Bacteroides abundance and decreased Bacteroides vulgatus were the top biomarkers of ME/CFS without IBS. Despite findings of differences in bacterial taxa and metabolic pathways defining ME/CFS subgroups, decreased metabolic pathways associated with unsaturated fatty acid biosynthesis and increased atrazine degradation pathways were independent of IBS co-morbidity. Increased vitamin B6 biosynthesis/salvage and pyrimidine ribonucleoside degradation were the top metabolic pathways in ME/CFS without IBS as well as in the total ME/CFS cohort. In ME/CFS subgroups, symptom severity measures including pain, fatigue, and reduced motivation were correlated with the abundance of distinct bacterial taxa and metabolic pathways.

Conclusions: Independent of IBS, ME/CFS is associated with dysbiosis and distinct bacterial metabolic disturbances that may influence disease severity. However, our findings indicate that dysbiotic features that are uniquely ME/CFS-associated may be masked by disturbances arising from the high prevalence of IBS co-morbidity in ME/CFS. These insights may enable more accurate diagnosis and lead to insights that inform the development of specific therapeutic strategies in ME/CFS subgroups.

 

Source: Dorottya Nagy-Szakal, Brent L. Williams, Nischay Mishra, Xiaoyu Che, Bohyun Lee, Lucinda Bateman, Nancy G. Klimas, Anthony L. Komaroff, Susan Levine, Jose G. Montoya, Daniel L. Peterson, Devi Ramanan, Komal Jain, Meredith L. Eddy, Mady Hornig and W. Ian Lipkin. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome20175:44. DOI: 10.1186/s40168-017-0261-y https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0261-y#MOESM1 (Full article)

 

Immune network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome with atypical and classical presentations

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a persistent and debilitating disorder marked by cognitive and sensory dysfunction and unexplained physical fatigue. Classically, cases present after a prodrome consistent with infection; however, some cases are atypical and have a different presentation and comorbidities that pose challenges for differential diagnosis. We analyzed cerebrospinal fluid (CSF) from 32 cases with classical ME/CFS and 27 cases with atypical ME/CFS using a 51-plex cytokine assay. Atypical subjects differed in cytokine profiles from classical subjects.

In logistic regression models incorporating immune molecules that were identified as potential predictor variables through feature selection, we found strong associations between the atypical ME/CFS phenotype and lower CSF levels of the inflammatory mediators, interleukin 17A and CXCL9. Network analysis revealed an absence of inverse inter-cytokine relationships in CSF from atypical patients, and more sparse positive intercorrelations, than classical subjects. Interleukin 1 receptor antagonist appeared to be a negative regulator in classical ME/CFS, with patterns suggestive of disturbances in interleukin 1 signaling and autoimmunity-type patterns of immune activation.

Immune signatures in the central nervous system of ME/CFS patients with atypical features may be distinct from those with more typical clinical presentations.

 

Source: Hornig M, Gottschalk CG, Eddy ML, Che X, Ukaigwe JE, Peterson DL, Lipkin WI. Immune network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome with atypical and classical presentations. Transl Psychiatry. 2017 Apr 4;7(4):e1080. doi: 10.1038/tp.2017.44. https://www.ncbi.nlm.nih.gov/pubmed/28375204

 

Multi-Site Clinical Assessment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (MCAM): Design and Implementation of a Prospective/Retrospective Rolling Cohort Study

Abstract:

In the Multi-Site Clinical Assessment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (MCAM), we relied on expert clinician diagnoses to enroll patients from 7 specialty clinics in the United States in order to perform a systematic collection of data on measures of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Healthy persons and those with other illnesses that share some features with ME/CFS were enrolled in comparison groups. The major objectives were to:

1) use standardized questionnaires to measure illness domains of ME/CFS and to evaluate patient heterogeneity overall and between clinics;

2) describe the course of illness, identify the measures that best correlate with meaningful clinical differences, and assess the performances of questionnaires as patient/person-reported outcome measures;

3) describe prescribed medications, orders for laboratory and other tests, and management tools used by expert clinicians to care for persons with ME/CFS;

4) collect biospecimens for future hypothesis testing and for evaluation of morning cortisol profiles; and

5) identify measures that best distinguish persons with ME/CFS from those in the comparison groups and detect subgroups of persons with ME/CFS who may have different underlying causes.

Enrollment began in 2012 and is planned to continue in multiple stages through 2017. We present the MCAM methods in detail, along with an initial description of the 471 patients with ME/CFS who were enrolled in stage 1.

Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US

 

Source: Unger ER, Lin JS, Tian H, Natelson BH, Lange G, Vu D, Blate M, Klimas NG, Balbin EG, Bateman L, Allen A, Lapp CW, Springs W, Kogelnik AM, Phan CC, Danver J, Podell RN, Fitzpatrick T, Peterson DL, Gottschalk CG, Rajeevan MS; MCAM Study Group. Multi-Site Clinical Assessment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (MCAM): Design and Implementation of a Prospective/Retrospective Rolling Cohort Study. Am J Epidemiol. 2017 Mar 17:1-10. doi: 10.1093/aje/kwx029. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/28338983

 

Chronic fatigue syndrome: Inherited virus can cause cognitive dysfunction and fatigue

Many experts believe that chronic fatigue syndrome (CFS) has several root causes including some viruses. Now, lead scientists Shara Pantry, Maria Medveczky and Peter Medveczky of the University of South Florida’s Morsani College of Medicine, along with the help of several collaborating scientists and clinicians, have published an article in the Journal of Medical Virology suggesting that a common virus, Human Herpesvirus 6 (HHV-6), is the possible cause of some CFS cases.

Over 95 percent of the population is infected with HHV-6 by age 3, but in those with normal immune systems the virus remains inactive. HHV-6 causes fever and rash (or roseola) in infants during early childhood, and is spread by saliva. In immunocompromised patients, it can reactivate to cause neurological dysfunction, encephalitis, pneumonia and organ failure.

“The good news reported in our study is that antiviral drugs improve the severe neurological symptoms, including chronic pain and long-term fatigue, suffered by a certain group of patients with CFS,” said Medveczky, who is a professor of molecular medicine at USF Health and the study’s principal investigator. “An estimated 15,000 to 20,000 patients with this CFS-like disease in the United States alone may ultimately benefit from the application of this research including antiviral drug therapy.”

The link between HHV-6 infection and CFS is quite complex. After the first encounter, or “primary infection,” all nine known human herpesviruses become silent, or “latent,” but may reactivate and cause diseases upon immunosuppression or during aging. A previous study from the Medveczky laboratory showed that HHV-6 is unique among human herpesviruses; during latency, its DNA integrates into the structures at the end of chromosomes known as telomeres.

Furthermore, this integrated HHV-6 genome can be inherited from parent to child, a condition commonly referred to as “chromosomally integrated HHV-6,” or CIHHV-6. By contrast, the “latent” genome of all other human herpesviruses converts to a circular form in the nucleus of the cell, not integrated into the chromosomes, and not inheritable by future generations.

Most studies suggest that around 0.8 percent of the U.S. and U.K. population is CIHHV6 positive, thus carrying a copy of HHV-6 in each cell. While most CIHHV-6 individuals appear healthy, they may be less able to defend themselves against other strains of HHV-6 that they might encounter. Medveczky reports that some of these individuals suffer from a CFS-like illness. In a cohort of CFS patients with serious neurological symptoms, the researchers found that the prevalence of CIHHV-6 was over 2 percent, or more than twice the level found in the general public. In light of this finding, the authors of the study suggest naming this sub-category of CFS “Inherited Human Herpesvirus 6 Syndrome,” or IHS.

Medveczky’s team discovered that untreated CIHHV-6 patients with CFS showed signs that the HHV-6 virus was actively replicating: determined by the presence of HHV-6 messenger RNA (mRNA), a substance produced only when the virus is active. The team followed these patients during treatment, and discovered that the HHV-6 mRNA disappeared by the sixth week of antiviral therapy with valganciclovir, a drug used to treat closely related cytomegalovirus (HHV-5). Of note, the group also found that short-term treatment regimens, even up to three weeks, had little or no impact on the HHV-6 mRNA level.

The investigators assumed that the integrated virus had become reactivated in these patients; however, to their surprise, they found that these IHS patients were infected by a second unrelated strain of HHV-6.

The USF-led study was supported by the HHV-6 Foundation and the National Institutes of Health.

Further studies are needed to confirm that immune dysregulation, along with subsequent chronic persistence of the HHV-6 virus, is the root cause of the IHS patients’ clinical symptoms, the researchers report.

Journal Reference: Shara N. Pantry, Maria M. Medveczky, Jesse H. Arbuckle, Janos Luka, Jose G. Montoya, Jianhong Hu, Rolf Renne, Daniel Peterson, Joshua C. Pritchett, Dharam V. Ablashi, Peter G. Medveczky. Persistent human herpesvirus-6 infection in patients with an inherited form of the virus. Journal of Medical Virology, 2013; DOI:10.1002/jmv.23685

 

Source: University of South Florida (USF Health). “Chronic fatigue syndrome: Inherited virus can cause cognitive dysfunction and fatigue.” ScienceDaily. ScienceDaily, 26 July 2013. https://www.sciencedaily.com/releases/2013/07/130726092427.htm

 

Distinct plasma immune signatures in ME/CFS are present early in the course of illness

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an unexplained incapacitating illness that may affect up to 4 million people in the United States alone. There are no validated laboratory tests for diagnosis or management despite global efforts to find biomarkers of disease. We considered the possibility that inability to identify such biomarkers reflected variations in diagnostic criteria and laboratory methods as well as the timing of sample collection during the course of the illness.

Accordingly, we leveraged two large, multicenter cohort studies of ME/CFS to assess the relationship of immune signatures with diagnosis, illness duration, and other clinical variables. Controls were frequency-matched on key variables known to affect immune status, including season of sampling and geographic site, in addition to age and sex. We report here distinct alterations in plasma immune signatures early in the course of ME/CFS (n = 52) relative to healthy controls (n = 348) that are not present in subjects with longer duration of illness (n = 246).

Analyses based on disease duration revealed that early ME/CFS cases had a prominent activation of both pro- and anti-inflammatory cytokines as well as dissociation of intercytokine regulatory networks. We found a stronger correlation of cytokine alterations with illness duration than with measures of illness severity, suggesting that the immunopathology of ME/CFS is not static. These findings have critical implications for discovery of interventional strategies and early diagnosis of ME/CFS.

 

Source: Hornig M, Montoya JG, Klimas NG, Levine S, Felsenstein D, Bateman L, Peterson DL, Gottschalk CG, Schultz AF, Che X, Eddy ML, Komaroff AL, Lipkin WI. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv. 2015 Feb;1(1). pii: e1400121. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465185/ (Full article)