Identifying commonalities and differences between EHR representations of PASC and ME/CFS in the RECOVER EHR cohort

Abstract:

Background: Shared symptoms and biological abnormalities between post-acute sequelae of SARS-CoV-2 infection (PASC) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could suggest common pathophysiological bases and would support coordinated treatment efforts. Empirical studies comparing these syndromes are needed to better understand their commonalities and differences.

Methods: We analyzed electronic health record data from 6.5 million adult patients from the National COVID Cohort Collaborative. PASC and ME/CFS diagnostic groups were defined based on recorded diagnoses, and other recorded conditions within the two groups were used to train separate machine learning-driven computable phenotypes (CPs). The most predictive conditions for each CP were examined and compared, and the overlap of patients labeled by each CP was examined. Condition records from the diagnostic groups were also used to statistically derive condition clusters. Rates of subphenotypes based on these clusters were compared between PASC and ME/CFS groups.

Results: Approximately half of patients labeled by one CP are also labeled by the other. Dyspnea, fatigue, and cognitive impairment are the most-predictive conditions shared by both CPs, whereas other most-predictive conditions are specific to one CP. Recorded conditions separate into cardiopulmonary, neurological, and comorbidity clusters, with the cardiopulmonary cluster showing partial specificity for the PASC groups.

Conclusions: Data-driven approaches indicate substantial overlap in the condition records associated with PASC and ME/CFS diagnoses. Nevertheless, cardiopulmonary conditions are somewhat more commonly associated with PASC diagnosis, whereas other conditions, such as pain and sleep disturbances, are more associated with ME/CFS diagnosis. These findings suggest that symptom management approaches to these illnesses could overlap.

Source: Powers JP, McIntee TJ, Bhatia A, Madlock-Brown CR, Seltzer J, Sekar A, Jain N, Hornig M, Seibert E, Leese PJ, Haendel M, Moffitt R, Pfaff ER; N3C Consortium and RECOVER-EHR. Identifying commonalities and differences between EHR representations of PASC and ME/CFS in the RECOVER EHR cohort. Commun Med (Lond). 2025 Apr 11;5(1):109. doi: 10.1038/s43856-025-00827-5. PMID: 40210986. https://www.nature.com/articles/s43856-025-00827-5 (Full text)

Advocating the role of trained immunity in the pathogenesis of ME/CFS: a mini review

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic disease of which the underlying (molecular) mechanisms are mostly unknown. An estimated 0.89% of the global population is affected by ME/CFS. Most patients experience a multitude of symptoms that severely affect their lives. These symptoms include post-exertional malaise, chronic fatigue, sleep disorder, impaired cognitive functions, flu-like symptoms, and chronic immune activation. Therapy focusses on symptom management, as there are no drugs available. Approximately 60% of patients develop ME/CFS following an acute infection.

Such a preceding infection may induce a state of trained immunity; defined as acquired, nonspecific, immunological memory of innate immune cells. Trained immune cells undergo long term epigenetic reprogramming, which leads to changes in chromatin accessibility, metabolism, and results in a hyperresponsive phenotype. Initially, trained immunity has only been demonstrated in peripheral blood monocytes and macrophages. However, more recent findings indicate that hematopoietic stem cells in the bone marrow are required for long-term persistence of trained immunity. While trained immunity is beneficial to combat infections, a disproportionate response may cause disease.

We hypothesize that pronounced hyperresponsiveness of innate immune cells to stimuli could account for the aberrant activation of various immune pathways, thereby contributing to the pathophysiology of ME/CFS. In this mini review, we elaborate on the concept of trained immunity as a factor involved in the pathogenesis of ME/CFS by presenting evidence from other post-infectious diseases with symptoms that closely resemble those of ME/CFS.

Source: Humer B, Dik WA, Versnel MA. Advocating the role of trained immunity in the pathogenesis of ME/CFS: a mini review. Front Immunol. 2025 Mar 25;16:1483764. doi: 10.3389/fimmu.2025.1483764. PMID: 40201181; PMCID: PMC11975576. https://pmc.ncbi.nlm.nih.gov/articles/PMC11975576/ (Full text)

mTORC1 syndrome (TorS): unifying paradigm for PASC, ME/CFS and PAIS

Abstract:

Post-acute SarS-Cov2 (PASC), Myalgia encephalomyelitis/Chronic fatigue syndrome (ME/CFS) and Post-acute infection syndrome (PAIS) consist of chronic post-acute infectious syndromes, sharing exhaustive fatigue, post exertional malaise, intermittent pain, postural tachycardia and neuro-cognitive-psychiatric dysfunction. However, the concerned shared pathophysiology is still unresolved in terms of upstream drivers and transducers. Also, risk factors which may determine vulnerability/progression to the chronic phase still remain to be defined.

In lack of drivers and a cohesive pathophysiology, the concerned syndromes still remain unmet therapeutic needs. ‘mTORC1 Syndrome’ (TorS) implies an exhaustive disease entity driven by sustained hyper-activation of the mammalian target of rapamycin C1 (mTORC1), and resulting in a variety of disease aspects of the Metabolic Syndrome (MetS), non-alcoholic fatty liver disease, chronic obstructive pulmonary disease, some cancers, neurodegeneration and other [Bar-Tana in Trends Endocrinol Metab 34:135-145, 2023]. TorS may offer a cohesive insight of PASC, ME/CFS and PAIS drivers, pathophysiology, vulnerability and treatment options.

Source: Bar-Tana J. mTORC1 syndrome (TorS): unifying paradigm for PASC, ME/CFS and PAIS. J Transl Med. 2025 Mar 10;23(1):297. doi: 10.1186/s12967-025-06220-z. PMID: 40059164. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-025-06220-z (Full text)

Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS)

Abstract:

We proposed that cerebrospinal fluid would provide objective evidence for disrupted brain metabolism in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). The concept of postexertional malaise (PEM) with disabling symptom exacerbation after limited exertion that does not respond to rest is a diagnostic criterion for ME/CFS. We proposed that submaximal exercise provocation would cause additional metabolic perturbations.

The metabolomic and lipidomic constituents of cerebrospinal fluid from separate nonexercise and postexercise cohorts of ME/CFS and sedentary control subjects were contrasted using targeted mass spectrometry (Biocrates) and frequentist multivariate general linear regression analysis with diagnosis, exercise, gender, age and body mass index as independent variables. ME/CFS diagnosis was associated with elevated serine but reduced 5-methyltetrahydrofolate (5MTHF).

One carbon pathways were disrupted. Methylation of glycine led to elevated sarcosine but further methylation to dimethylglycine and choline was decreased. Creatine and purine intermediates were elevated. Transaconitate from the tricarboxylic acid cycle was elevated in ME/CFS along with essential aromatic amino acids, lysine, purine, pyrimidine and microbiome metabolites. Serine is a precursor of phospholipids and sphingomyelins that were also elevated in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls.

The findings differ from prior hypometabolic findings in ME/CFS plasma. The novel findings generate new hypotheses regarding serine-folate-glycine one carbon and serine-phospholipid metabolism, elevation of end products of catabolic pathways, shifts in folate, thiamine and other vitamins with exercise, and changes in sphingomyelins that may indicate myelin and white matter dysfunction in ME/CFS.

Source: Baraniuk JN. Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). Sci Rep. 2025 Mar 3;15(1):7381. doi: 10.1038/s41598-025-91324-1. PMID: 40025157. https://www.nature.com/articles/s41598-025-91324-1 (Full text)

Cerebral Blood Flow in Orthostatic Intolerance

Abstract:

Cerebral blood flow (CBF) is vital for delivering oxygen and nutrients to the brain. Many forms of orthostatic intolerance (OI) involve impaired regulation of CBF in the upright posture, which results in disabling symptoms that decrease quality of life. Because CBF is not easy to measure, rises in heart rate or drops in blood pressure are used as proxies for abnormal CBF. These result in diagnoses such as postural orthostatic tachycardia syndrome and orthostatic hypotension. However, in many other OI syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and long COVID, heart rate and blood pressure are frequently normal despite significant drops in CBF. This often leads to the incorrect conclusion that there is nothing hemodynamically abnormal in these patients and thus no explanation or treatment is needed. There is a need to measure CBF, as orthostatic hypoperfusion is the shared pathophysiology for all forms of OI. In this review, we examine the literature studying CBF dysfunction in various syndromes with OI and evaluate methods of measuring CBF including transcranial Doppler ultrasound, extracranial cerebral blood flow ultrasound, near infrared spectroscopy, and wearable devices.

Source: Khan MS, Miller AJ, Ejaz A, Molinger J, Goyal P, MacLeod DB, Swavely A, Wilson E, Pergola M, Tandri H, Mills CF, Raj SR, Fudim M. Cerebral Blood Flow in Orthostatic Intolerance. J Am Heart Assoc. 2025 Feb 3:e036752. doi: 10.1161/JAHA.124.036752. Epub ahead of print. PMID: 39895557. https://www.ahajournals.org/doi/10.1161/JAHA.124.036752 (Full text)

Exertional Exhaustion (Post-Exertional Malaise, PEM) Evaluated by the Effects of Exercise on Cerebrospinal Fluid Metabolomics–Lipidomics and Serine Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract

Post-exertional malaise (PEM) is a defining condition of myalgic encephalomyelitis (ME/CFS). The concept requires that a provocation causes disabling limitation of cognitive and functional effort (“fatigue”) that does not respond to rest. Cerebrospinal fluid was examined as a proxy for brain metabolite and lipid flux and to provide objective evidence of pathophysiological dysfunction. Two cohorts of ME/CFS and sedentary control subjects had lumbar punctures at baseline (non-exercise) or after submaximal exercise (post-exercise). Cerebrospinal fluid metabolites and lipids were quantified by targeted Biocrates mass spectrometry methods.
Significant differences between ME/CFS and control, non-exercise vs. post-exercise, and by gender were examined by multivariate general linear regression and Bayesian regression methods. Differences were found at baseline between ME/CFS and control groups indicating disease-related pathologies, and between non-exercise and post-exercise groups implicating PEM-related pathologies.
A new, novel finding was elevated serine and its derivatives sarcosine and phospholipids with a decrease in 5-methyltetrahydrofolate (5MTHF), which suggests general dysfunction of folate and one-carbon metabolism in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. In general, the frequentist and Bayesian analyses generated complementary but not identical sets of analytes that matched the metabolic modules and pathway analysis. Cerebrospinal fluid is unique because it samples the choroid plexus, brain interstitial fluid, and cells of the brain parenchyma.
The quantitative outcomes were placed into the context of the cell danger response hypothesis to explain shifts in serine and phospholipid synthesis; folate and one-carbon metabolism that affect sarcosine, creatine, purines, and thymidylate; aromatic and anaplerotic amino acids; glucose, TCA cycle, trans-aconitate, and coenzyme A in energy metabolism; and vitamin activities that may be altered by exertion. The metabolic and phospholipid profiles suggest the additional hypothesis that white matter dysfunction may contribute to the cognitive dysfunction in ME/CFS.
Source: Baraniuk JN. Exertional Exhaustion (Post-Exertional Malaise, PEM) Evaluated by the Effects of Exercise on Cerebrospinal Fluid Metabolomics–Lipidomics and Serine Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Molecular Sciences. 2025; 26(3):1282. https://doi.org/10.3390/ijms26031282 https://www.mdpi.com/1422-0067/26/3/1282 (Full text)

Two Different Hemodynamic Responses in ME/CFS Patients with Postural Orthostatic Tachycardia Syndrome During Head-Up Tilt Testing

Abstract:

Introduction: While the diagnosis of postural orthostatic tachycardia syndrome (POTS) is based on heart rate (HR) and blood pressure (BP) criteria, the pathophysiology of POTS is not fully understood as multiple pathophysiological mechanisms have been recognized. Also, cardiac function, being dependent on preload, afterload, contractility, and HR, has not been properly studied. Preload and contractility changes can be inferred from stroke volume index (SVI) changes during a tilt test. Afterload plays a minor role in POTS as a normal BP response is a prerequisite for POTS. Therefore, we analyzed the HR-SVI relation during a tilt test in myalgic encephalomyelitis (ME/CFS) patients with POTS and compared the data with ME/CFS patients with a normal HR-BP response and with that of healthy controls (HC).

Material and Methods: In ME/CFS patients with either POTS (n = 233) or a normal HR-BP response (n = 507) and healthy controls (n = 48), we measured SVI (by suprasternal echo), HR, and BP during the tilt.

Results: In all ME/CFS patients, the decrease in SVI was larger compared to HC. In patients with a normal HR-BP response and in POTS patients with a HR increase between 30-39 bpm, there was an inverse relationship between the HR increase and SVI decrease during the tilt, compatible with increased venous pooling. In POTS patients with a HR increase ≥40 bpm, this inverse relation was lost, and SVI changes were significantly less compared to POTS patients with a HR increase between 30-39 bpm, suggestive of a hyperadrenergic response.

Conclusions: In ME/CFS patients with POTS, two different hemodynamic profiles can be observed: in patients with a limited HR increase, mainly increased venous pooling is observed, while in patients with a large (≥ 40 bpm) HR increase the data are suggestive of a hyperadrenergic response. These two different profiles may have different therapeutic implications.

Source: van Campen CLMC, Rowe PC, Visser FC. Two Different Hemodynamic Responses in ME/CFS Patients with Postural Orthostatic Tachycardia Syndrome During Head-Up Tilt Testing. J Clin Med. 2024 Dec 18;13(24):7726. doi: 10.3390/jcm13247726. PMID: 39768649. https://www.mdpi.com/2077-0383/13/24/7726 (Full text)

Transcriptional reprogramming primes CD8+ T cells toward exhaustion in Myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME) is a severe, debilitating disease, with substantial evidence pointing to immune dysregulation as a key contributor to pathophysiology. To characterize the gene regulatory state underlying T cell dysregulation in ME, we performed multiomic analysis across T cell subsets by integrating single-cell RNA-seq, RNA-seq, and ATAC-seq and further analyzed CD8+ T cell subpopulations following symptom provocation.

Specific subsets of CD8+ T cells, as well as certain innate T cells, displayed the most pronounced dysregulation in ME. We observed upregulation of key transcription factors associated with T cell exhaustion in CD8+ T cell effector memory subsets, as well as an altered chromatin landscape and metabolic reprogramming consistent with an exhausted immune cell state. To validate these observations, we analyzed expression of exhaustion markers using flow cytometry, detecting a higher frequency of exhaustion-associated factors.

Together, these data identify T cell exhaustion as a component of ME, a finding which may provide a basis for future therapies, such as checkpoint blockade, metabolic interventions, or drugs that target chronic viral infections.

Source: Iu DS, Maya J, Vu LT, Fogarty EA, McNairn AJ, Ahmed F, Franconi CJ, Munn PR, Grenier JK, Hanson MR, Grimson A. Transcriptional reprogramming primes CD8+ T cells toward exhaustion in Myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2415119121. doi: 10.1073/pnas.2415119121. Epub 2024 Dec 2. PMID: 39621903. https://www.pnas.org/doi/10.1073/pnas.2415119121 (Full text)

Adrenergic dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: A systematic review and meta-analysis

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are comorbid disorders with overlapping symptoms. Research highlights autonomic dysfunction compared to healthy individuals, particularly involving the sympathetic branch. While past reviews focused on neurophysiological assessments, this systematic review summarises biological adrenergic markers, offering deeper insights into the observed sympathetic dysfunction in ME/CFS and FM aiming to identify targetable pathophysiological mechanisms.

Methods: A systematic search was performed on PubMed, Web of Science, Embase and Scopus. Studies investigating peripheral biological markers of adrenergic function in patients with ME/CFS or FM compared to healthy controls at baseline were included. Meta-analyses were performed using R statistical software.

Results: This meta-analysis of 37 studies, encompassing 543 ME/CFS patients and 651 FM patients, compared with 747 and 447 healthy controls, respectively, revealed elevated adrenaline (SMD = .49 [.31-.67]; Z = 5.29, p < .01) and β1 adrenergic receptor expression (SMD = .79 [.06-1.52]; Z = 2.13; p = .03) in blood of ME/CFS patients at rest. Additionally, patients with ME/CFS had a greater increase in the expression of α2A adrenergic receptor (AR, SMD = .57 [.18-.97]; Z = 2.85, p < .01), β2 AR (SMD = .41 [.02-.81]; Z = 2.04; p = .04) and COMT (SMD = .42 [.03-.81]; Z = 2.11; p = .03) after exercise and an increased response of noradrenaline to an orthostatic test (SMD = .11 [-.47 to -.70]; Z = 2.10; p = .04), both found in blood. FM patients showed no significant differences at baseline but exhibited a diminished adrenaline response to exercise (SMD = -.79 [-1.27 to -.30]; Z = -3.14; p < .01).

Conclusion: This systematic review and meta-analysis revealed adrenergic dysfunction mainly in patients with ME/CFS. Higher baseline adrenaline levels and atypical responses to exercise in ME/CFS indicate that sympathetic dysfunction, underscored by adrenergic abnormalities, is more involved in the pathophysiology of ME/CFS rather than FM.

Source: Hendrix J, Fanning L, Wyns A, Ahmed I, Patil MS, Richter E, Van Campenhout J, Ickmans K, Mertens R, Nijs J, Godderis L, Polli A. Adrenergic dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: A systematic review and meta-analysis. Eur J Clin Invest. 2024 Sep 25:e14318. doi: 10.1111/eci.14318. Epub ahead of print. PMID: 39319943. https://pubmed.ncbi.nlm.nih.gov/39319943/

Absence of BOLD adaptation in chronic fatigue syndrome revealed by task functional MRI

Abstract:

Neurological symptoms are central to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), yet its underlying neurophysiological mechanisms remain elusive. We examined a neglected aspect of task-based functional MRI, focusing on how blood oxygenation level-dependent (BOLD) signals alter during cognitive tasks in ME/CFS.

This prospective observational study utilised MRI scans on ME/CFS participants and healthy controls (HCs) with sedentary lifestyles (ACTRN12622001095752). Participants completed two blocks of a Symbol Digit Modalities Test, with 30 trials per block split into two sets. The fMRI signal changes between blocks and sets were compared within and between groups. Thirty-four ME/CFS participants (38 years ± 10; 27 women) and 34 HCs (38 ± 10; 27 women), were evaluated.

In the second task block, ME/CFS participants exhibited increased activation in the right postcentral gyrus, contrasting with decreased activation in multiple regions in HCs. These results were further confirmed by significantly higher bilateral dynamic changes (2nd vs 1st set) in the motor, sensory and cognitive cortex in ME/CFS compared to HCs and significant correlations between those changes in the left primary motor cortex with fatigue severities. BOLD adaptation, potentially improving energy economy, was absent in ME/CFS, which may provide an underlying neurophysiological process in ME/CFS.

Source: Schönberg L, Mohamed AZ, Yu Q, Kwiatek RA, Del Fante P, Calhoun VD, Shan ZY. Absence of BOLD adaptation in chronic fatigue syndrome revealed by task functional MRI. J Cereb Blood Flow Metab. 2024 Aug 7:271678X241270528. doi: 10.1177/0271678X241270528. Epub ahead of print. PMID: 39113421. https://journals.sagepub.com/doi/10.1177/0271678X241270528 (Full text)