Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome

Abstract:

OBJECTIVES: There is evidence that inflammatory, oxidative and nitrosative stress (IO&NS) pathways participate in the pathophysiology of a subgroup of patients with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Increased IgM-related autoimmune responses to oxidative specific epitopes (OSEs), including malondialdehyde (MDA), oleic acid and phosphatidyl inositol (Pi), and nitroso-(NO)-adducts, including NO-tryptophan (NOW), NO-arginine and NO-cysteinyl, are frequently observed in ME/CFS. Autoimmune responses in ME/CFS may be driven by increased bacterial translocation as measured by IgM and IgA responses to LPS of gram negative bacteria.

METHODS: The aim of this study is to examine whether IgM responses to OSEs and NO-adducts are related to a better outcome as measured by the Fibromyalgia and Fatigue Rating Scale (FF). 76 ME/CFS patients with initially abnormal autoimmune responses were treated with care-as-usual, including nutraceuticals with anti-IO&NS effects (NAIOS), such as L-carnitine, coenzyme Q10, taurine + lipoic acid, with or without curcumine + quercitine or N-acetyl-cysteine, zinc + glutamine.

RESULTS: We found that use of these NAIOS was associated with highly significant reductions in initially increased IgM-mediated autoimmune responses to OSEs and NO-adducts. A greater reduction in autoimmune responses to OSEs during intake of these NAIOS was associated with a lower FF score. Reductions in IgM responses to oleic acid, MDA and Pi, but not in any of the NO-adducts, were associated with reductions in severity of illness. These associations remained significant after adjusting for possible effects of increased bacterial translocation (leaky gut).

CONCLUSIONS: Our results show that autoimmune responses to OSEs are involved in the pathophysiology of ME/CFS and that these pathways are a new drug target in a subgroup of ME/CFS patients. Although hypernitrosylation and nitrosative stress play a role in ME/CFS, reductions in these pathways are not associated with lowered severity of illness. Randomized controlled trials with NAIOS should be carried out in the subgroup of ME/CFS patients with initially increased autoimmune responses to OSEs.

 

Source: Maes M, Leunis JC. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett. 2014;35(7):577-85. https://www.ncbi.nlm.nih.gov/pubmed/25617880

 

Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

Abstract:

Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system.

The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels.

Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease.

 

Source: Morris G, Maes M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol. 2014 Mar;12(2):168-85. doi: 10.2174/1570159X11666131120224653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964747/ (Full article)

 

Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) is classified by the World Health Organization as a disorder of the central nervous system. ME/cfs is an neuro-immune disorder accompanied by chronic low-grade inflammation, increased levels of oxidative and nitrosative stress (O&NS), O&NS-mediated damage to fatty acids, DNA and proteins, autoimmune reactions directed against neoantigens and brain disorders. Mitochondrial dysfunctions have been found in ME/cfs, e.g. lowered ATP production, impaired oxidative phosphorylation and mitochondrial damage.

This paper reviews the pathways that may explain mitochondrial dysfunctions in ME/cfs. Increased levels of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-α, and elastase, and increased O&NS may inhibit mitochondrial respiration, decrease the activities of the electron transport chain and mitochondrial membrane potential, increase mitochondrial membrane permeability, interfere with ATP production and cause mitochondrial shutdown. The activated O&NS pathways may additionally lead to damage of mitochondrial DNA and membranes thus decreasing membrane fluidity. Lowered levels of antioxidants, zinc and coenzyme Q10, and ω3 polyunsaturated fatty acids in ME/cfs may further aggravate the activated immuno-inflammatory and O&NS pathways.

Therefore, it may be concluded that immuno-inflammatory and O&NS pathways may play a role in the mitochondrial dysfunctions and consequently the bioenergetic abnormalities seen in patients with ME/cfs. Defects in ATP production and the electron transport complex, in turn, are associated with an elevated production of superoxide and hydrogen peroxide in mitochondria creating adaptive and synergistic damage.

It is argued that mitochondrial dysfunctions, e.g. lowered ATP production, may play a role in the onset of ME/cfs symptoms, e.g. fatigue and post exertional malaise, and may explain in part the central metabolic abnormalities observed in ME/cfs, e.g. glucose hypometabolism and cerebral hypoperfusion.

 

Source: Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis. 2014 Mar;29(1):19-36. doi: 10.1007/s11011-013-9435-x. Epub 2013 Sep 10.https://www.ncbi.nlm.nih.gov/pubmed/24557875

 

Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome

Abstract:

OBJECTIVE: Somatization is a symptom cluster characterized by ‘psychosomatic’ symptoms, that is, medically unexplained symptoms, and is a common component of other conditions, including depression and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This article reviews the data regarding the pathophysiological foundations of ‘psychosomatic’ symptoms and the implications that this has for conceptualization of what may more appropriately be termed physio-somatic symptoms.

METHOD: This narrative review used papers published in PubMed, Scopus, and Google Scholar electronic databases using the keywords: depression and chronic fatigue, depression and somatization, somatization and chronic fatigue syndrome, each combined with inflammation, inflammatory, tryptophan, and cell-mediated immune (CMI).

RESULTS: The physio-somatic symptoms of depression, ME/CFS, and somatization are associated with specific biomarkers of inflammation and CMI activation, which are correlated with, and causally linked to, changes in the tryptophan catabolite (TRYCAT) pathway. Oxidative and nitrosative stress induces damage that increases neoepitopes and autoimmunity that contribute to the immuno-inflammatory processes. These pathways are all known to cause physio-somatic symptoms, including fatigue, malaise, autonomic symptoms, hyperalgesia, intestinal hypermotility, peripheral neuropathy, etc.

CONCLUSION: Biological underpinnings, such as immune-inflammatory pathways, may explain, at least in part, the occurrence of physio-somatic symptoms in depression, somatization, or myalgic encephalomyelitis/chronic fatigue syndrome and thus the clinical overlap among these disorders.

© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Comment in

Source: Anderson G, Berk M, Maes M. Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand. 2014 Feb;129(2):83-97. doi: 10.1111/acps.12182. Epub 2013 Aug 17. https://www.ncbi.nlm.nih.gov/pubmed/23952563

 

The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets?

Abstract:

INTRODUCTION: Chronic fatigue syndrome (CFS) and fibromyalgia (FM) are characterized by persistent pain and fatigue. It is hypothesized that reactive oxygen species (ROS), caused by oxidative and nitrosative stress, by inhibiting mitochondrial function can be involved in muscle pain and central sensitization as typically seen in these patients.

AREAS COVERED: The current evidence regarding oxidative and nitrosative stress and mitochondrial dysfunction in CFS and FM is presented in relation to chronic widespread pain. Mitochondrial dysfunction has been shown in leukocytes of CFS patients and in muscle cells of FM patients, which could explain the muscle pain. Additionally, if mitochondrial dysfunction is also present in central neural cells, this could result in lowered ATP pools in neural cells, leading to generalized hypersensitivity and chronic widespread pain.

EXPERT OPINION: Increased ROS in CFS and FM, resulting in impaired mitochondrial function and reduced ATP in muscle and neural cells, might lead to chronic widespread pain in these patients. Therefore, targeting increased ROS by antioxidants and targeting the mitochondrial biogenesis could offer a solution for the chronic pain in these patients. The role of exercise therapy in restoring mitochondrial dysfunction remains to be explored, and provides important avenues for future research in this area.

 

Source: Meeus M, Nijs J, Hermans L, Goubert D, Calders P. The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets? Expert Opin Ther Targets. 2013 Sep;17(9):1081-9. doi: 10.1517/14728222.2013.818657. Epub 2013 Jul 9. https://www.ncbi.nlm.nih.gov/pubmed/23834645

 

Inflammatory and oxidative and nitrosative stress cascades as new drug targets in myalgic encephalomyelitis and chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis (ME), chronic fatigue syndrome (CFS) and chronic fatigue (CF) are distinct diagnostic categories with regard to clinical symptoms, severity of illness and biomarkers. Patients with ME and CFS show higher scores on fatigue, neurocognitive disorders, hyperalgesia, autonomic symptoms, postexertional malaise and a subjective feeling of infection than patients with CF. ME is characterized by increased postexertional malaise, a subjective feeling of infection and neurocognitive disorders and is a more severe variant than CFS.

Fukuda’s 1994 CDC criteria are adequate to make a distinction between patients with ME/CFS and CF, while ME/CFS patients should be subdivided into those with and without postexertional malaise into ME and CFS, respectively. Different interrelated pathophysiological mechanisms play a role in ME/CFS, i.e. (1) inflammation and immune activation, (2) oxidative and nitrosative stress and lowered antioxidant defenses, (3) activation of cell signaling networks, e.g. nuclear factor ĸβ, the 2 9 ,5 9 -oligoadenylate/RNase-L and/or protein kinase R pathway, (4) a transition towards autoimmune reactions, and (5) bacterial translocation.

The inflammatory biomarkers are higher in ME/CFS than in CF and higher in ME than in CFS. The above-mentioned pathways may explain the onset of characteristic ME/CFS symptoms, such as fatigue, malaise, autonomic symptoms, hyperalgesia, and neurocognitive symptoms. Different etiological factors may trigger ME/CFS/CF, e.g. viral and bacterial infections, and (auto)immune and inflammatory disorders, while psychosocial and physical stressors act as modulating factors. New pathophysiologically driven drug candidates for ME and CFS are discussed which target the pathways that play a role in ME/CFS.

Copyright © 2013 S. Karger AG, Basel.

 

Source: Maes M. Inflammatory and oxidative and nitrosative stress cascades as new drug targets in myalgic encephalomyelitis and chronic fatigue syndrome. Mod Trends Pharmacopsychiatri. 2013;28:162-74. doi: 10.1159/000343982. Epub 2013 Feb 27. https://www.ncbi.nlm.nih.gov/pubmed/25224898

 

IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology

Abstract:

BACKGROUND: There is evidence that depression is accompanied by oxidative and nitrosative stress (O&NS), as indicated by increased free radical levels, lipid peroxidation, and lowered antioxidant levels. The aims of the present study are to examine whether depression is accompanied by autoimmune responses directed against a) neoepitopes that are formed following O&NS damage; and b) the major anchorage molecules, i.e. palmitic and myristic acids and S-farnesyl-L-cysteine.

METHODS: We examined serum IgM antibodies to the conjugated fatty acids, palmitic and myristic acids; acetylcholine; S-farnesyl-L-cysteine; and NO-modified adducts in 26 depressed patients and 17 normal controls. Severity of depression was measured with the Hamilton Depression Rating Scale and severity of fatigue and somatic (F&S) symptoms with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale.

RESULTS: The prevalences and mean values for the serum IgM levels directed against conjugated palmitic and myristic acids, acetylcholine, S-farnesyl-L-cysteine; and the conjugated NO adducts, NO-tyrosine, NO-phenylalanine, NO-aspartate, NO-histidine, and NO-creatine were significantly higher in depressed patients than in normal controls. The autoimmune responses were significantly related to FF symptoms, such as fatigue and a flu-like malaise, whereas the indicants of nitrosative stress were related to gastro-intestinal and autonomic symptoms.

DISCUSSION: Depression is characterized by IgM-related autoimmune responses directed against a) neoepitopes that are normally not detected by the immune system but that due to damage by O&NS have become immunogenic; and b) anchorage epitopes, i.e. palmitic and myristic acids, and S-farnesyl-L-cysteine. These autoimmune responses play a role in the inflammatory and O&NS pathophysiology of depression and may mediate the cellular dysfunctions that contribute to neuroprogression, e.g. aberrations in signal transduction, cellular differentiation and apoptosis.

Copyright © 2011 Elsevier B.V. All rights reserved.

 

Source: Maes M, Mihaylova I, Kubera M, Leunis JC, Geffard M. IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord. 2011 Dec;135(1-3):414-8. doi: 10.1016/j.jad.2011.08.023. Epub 2011 Sep 17. https://www.ncbi.nlm.nih.gov/pubmed/21930301

 

Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome is a heterogeneous disorder with unknown pathogenesis and etiology, characterized by tiredness, difficulty in concentration and memory, and concomitant skeletal and muscular pain, thus affecting both mental and physical domains. The pathogenesis of chronic fatigue syndrome is multifactorial and involves increased oxido-nitrosative stress along with generation of pro-inflammatory cytokines such as TNF-α.

In the present study chronic fatigue was produced in rats by plunging a load of 10 ± 2% body weight and subjecting them to forced swim inside a rectangular jar daily for 28 days. Endurance capacity and post-swim fatigue were assessed on 1st, 7th, 14th, 21st and 28th days. EGCG was administered daily by oral gavage 30 min before forced swim session. On the 29th day, after assessment of various behavioral parameters, blood was collected through tail vein, and animals were sacrificed to harvest the brains, spleens and thymus.

Chronic fatigue group exhibited significant behavioral alterations along with enhanced oxido-nitrosative stress and serum TNF-α level as compared to naive group. Chronic treatment with EGCG restored all the behavioral and biochemical alterations associated with chronic fatigue syndrome. The present study signifies the therapeutic potential of EGCG for the treatment of chronic fatigue syndrome.

Copyright © 2011 Elsevier Inc. All rights reserved.

 

Source: Sachdeva AK, Kuhad A, Chopra K. Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res Bull. 2011 Oct 10;86(3-4):165-72. doi: 10.1016/j.brainresbull.2011.06.007. Epub 2011 Jul 28. https://www.ncbi.nlm.nih.gov/pubmed/21821105

 

Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis / chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression

Abstract:

BACKGROUND: Major depression and myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are two disorders accompanied by an upregulation of the inflammatory and oxidative and nitrosative (IO&NS) pathways and a decreased antioxidant status. Moreover, depression is accompanied by disorders in inflammatory and neuroprogressive (IN-PRO) pathways.

METHODS: This study examines whole blood glutathione peroxidase (GPX) in depression and in ME/CFS; GPX is an enzyme that reduces hydroperoxides by oxidizing glutathione and consequently protects the cells from oxidative damage. Blood was sampled in 39 patients with depression, 40 patients with ME/CFS and 24 normal volunteers. Whole blood was analysed for GPX activity using the Ransel assay (Randox). Severity of illness was measured by means of the Hamilton Depression Rating Scale (HDRS) and the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale (FF scale).

RESULTS: We found that whole blood GPX activity was significantly (p=0.001) lower in depressed patients than in normal controls and that there were no significant differences between ME/CFS and controls. In depression and ME/CFS, there were significant and inverse relationships between GPX activity and the FF items, depressed mood and autonomic symptoms. In depression, there were significant and negative correlations between whole blood GPX and the HDRS score and autonomic symptoms.

DISCUSSION: The results show that lowered whole blood GPX activity contributes to the lowered antioxidant status in depression. Since GPX activity is a predictor of neuroprogression and coronary artery disease (CAD), lowered GPX activity in depression contributes to the IN-PRO pathways and the comorbidity between depression and CAD. Our results suggest that patients with depression would benefit from Ebselen or a supplementation with glutathione, N-Acetyl-l-Cysteine and selenium.

 

Source: Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis / chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol Lett. 2011;32(2):133-40. https://www.ncbi.nlm.nih.gov/pubmed/21552194

Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

BACKGROUND: There is evidence that myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by activation of immune, inflammatory, oxidative and nitrosative stress (IO&NS) pathways. The present study was carried out in order to examine whether ME/CFS is accompanied by increased levels of plasma peroxides and serum oxidized LDL (oxLDL) antibodies, two biomarkers of oxidative stress.

MATERIAL/METHODS: Blood was collected from 56 patients with ME/CFS and 37 normal volunteers. Severity of ME/CFS was measured using the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale.

RESULTS: Plasma peroxide concentrations were significantly higher in patients with ME/CFS than in normal controls. There was a trend towards significantly higher serum oxLDL antibodies in ME/CFS than in controls. Both biomarkers contributed significantly in discriminating between patients with ME/CFS and normal controls. Plasma peroxide and serum oxLDL antibody levels were both significantly related to one of the FF symptoms.

CONCLUSIONS: The results show that ME/CFS is characterized by increased oxidative stress.

 

Source: Maes M, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Sci Monit. 2011 Apr;17(4):SC11-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539515/ (Full article)