Fibromyalgia and Chronic Fatigue Syndromes: A systematic review and meta-analysis of cardiorespiratory fitness and neuromuscular function compared with healthy individuals

Abstract:

Objective: To determine cardiorespiratory fitness and neuromuscular function of people with CFS and FMS compared to healthy individuals.

Design: Systematic review and meta-analysis.

Data sources: PubMed, Medline, CINAHL, AMED, Cochrane Central Register of Controlled Trials (CENTRAL), and PEDro from inception to June 2022.

Eligible criteria for selecting studies: Studies were included if presenting baseline data on cardiorespiratory fitness and/or neuromuscular function from observational or interventional studies of patients diagnosed with FMS or CFS. Participants were aged 18 years or older, with results also provided for healthy controls. Risk of bias assessment was conducted using the Quality Assessment Tool for Quantitative Studies (EPHPP).

Results: 99 studies including 9853 participants (5808 patients; 4405 healthy controls) met our eligibility criteria. Random effects meta-analysis showed lower cardiorespiratory fitness (VO2max, anaerobic threshold, peak lactate) and neuromuscular function (MVC, fatigability, voluntary activation, muscle volume, muscle mass, rate of perceived exertion) in CFS and FMS compared to controls: all with moderate to high effect sizes.

Discussion: Our results demonstrate lower cardiorespiratory fitness and muscle function in those living with FMS or CFS when compared to controls. There were indications of dysregulated neuro-muscular interactions including heightened perceptions of effort, reduced ability to activate the available musculature during exercise and reduced tolerance of exercise.

Source: Zambolin F, Duro-Ocana P, Faisal A, Bagley L, Gregory WJ, Jones AW, McPhee JS. Fibromyalgia and Chronic Fatigue Syndromes: A systematic review and meta-analysis of cardiorespiratory fitness and neuromuscular function compared with healthy individuals. PLoS One. 2022 Oct 20;17(10):e0276009. doi: 10.1371/journal.pone.0276009. PMID: 36264901; PMCID: PMC9584387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584387/ (Full text)

Long-term neuromuscular consequences of SARS-Cov-2 and their similarities with myalgic encephalomyelitis/chronic fatigue syndrome: results of the retrospective CoLGEM study

Abstract:

Background: Patients with long-COVID often complain of continuous fatigue, myalgia, sleep problems, cognitive dysfunction, and post-exertional malaise. No data are available on EMG recording of evoked myopotentials (M-waves) or exercise-induced alterations in long-COVID patients, providing evidence of muscle membrane fatigue. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) develops in more than half of patients after an infectious disease, particularly viral diseases. A large proportion (around 70%) of these patients have neuromuscular disorders with M-wave alterations during and after exercise. Our hypothesis was that M-wave alterations would be also found in long-COVID patients, in association with neuromuscular symptoms, similar to ME/CFS.

Methods: This retrospective observational ColGEM (Covid LonG Encéphalomyelite Myalgique) study compared 59 patients with long-COVID and 55 ME/CFS patients with a history of severe infection who presented before the COVID pandemic. All of these patients underwent the same protocol consisting of a questionnaire focusing on neural and neuromuscular disorders and M-wave recording in the rectus femoris muscle before, during, and 10 min after a progressive cycling exercise. Maximal handgrip strength (MHGS) and maximal exercise power were also measured. The frequency of symptoms and magnitude of M-wave changes in the two groups were compared using non-parametric and parametric tests.

Results: The frequency of fatigue, myalgia, sleep problems, cognitive dysfunction, and post-exertional malaise as well as the magnitude of exercise-induced M-wave alterations were the same in the two groups. By contrast, digestive problems were less present in long-COVID. M-wave alterations were greater in ME/CFS patients as in those with long-COVID when the highest muscle strength and highest exercise performance were measured.

Conclusions: These high clinical and biological similarities between long-COVID and ME/CFS support the hypothesis that SARS-Cov-2 infection can cause ME/CFS symptoms. Trial registration Registered retrospectively.

Source: Retornaz F, Rebaudet S, Stavris C, Jammes Y. Long-term neuromuscular consequences of SARS-Cov-2 and their similarities with myalgic encephalomyelitis/chronic fatigue syndrome: results of the retrospective CoLGEM study. J Transl Med. 2022 Sep 24;20(1):429. doi: 10.1186/s12967-022-03638-7. PMID: 36153556. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03638-7 (Full text)

Prevalence of peripheral neuropathy and myopathy in patients post-COVID-19 infection

Abstract:

Background: Severe acute respiratory syndrome (SARS-CoV-2), caused by the Coronavirus 2019 (COVID-19), has become a life-threatening epidemic, affecting multiple organs, including the nervous system. Recent studies have documented that COVID-19-associated peripheral neuropathy is a common and frequent problem, with central and peripheral nervous system complications.

Objective: This work aims to evaluate the peripheral nerves and muscle involvement after COVID-19 infection, in addition to studying the prevalence rate and risk factors of their affection.

Methods: The study involved 400 patients, divided into 2 groups, with a history of COVID-19 infection with or without symptoms of neuromuscular affection, and 30 gender- and age-matched healthy volunteers were involved as controls. They were referred to the Department of Rheumatology and Rehabilitation for electro-diagnosis. All participants performed complete clinical examination and laboratory measures with an electrophysiological study.

Results: The prevalence of peripheral neuropathy and myopathy in post-COVID-19 patients was 56.3% among all patients. A significant difference was detected among patients of both groups regarding serum creatine phosphokinase level, clinical signs, and electrophysiologic findings of neuropathy and myopathy compared to the control group, with more prominent features among the symptomatic group. Histories of hospitalization, severe and long-lasting respiratory symptoms were risk factors for developing neuromuscular complications.

Conclusions: The present study could indicate that muscle involvement and peripheral nerve affection are common problems even among asymptomatic patients after COVID-19 infection, especially in the presence of any risk factors.

Source: Saif DS, Ibrahem RA, Eltabl MA. Prevalence of peripheral neuropathy and myopathy in patients post-COVID-19 infection. Int J Rheum Dis. 2022 Aug 1. doi: 10.1111/1756-185X.14409. Epub ahead of print. PMID: 35915515. https://onlinelibrary.wiley.com/doi/10.1111/1756-185X.14409 (Full text)

Understanding neuromuscular disorders in chronic fatigue syndrome

Abstract:

Muscle failure has been demonstrated in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Neurophysiological tools demonstrate the existence of both central and peripheral fatigue in these patients. Central fatigue is deduced from the reduced amplitude of myopotentials evoked by transcranial magnetic stimulation of the motor cortex as well as by the muscle response to interpolated twitches during sustained fatiguing efforts. An impaired muscle membrane conduction velocity assessed by the reduced amplitude and lengthened duration of myopotentials evoked by direct muscle stimulation is the defining feature of peripheral fatigue.

Some patients with ME/CFS show an increased oxidative stress response to exercise. The formation of lipid hydroperoxides in the sarcolemma, which alters ionic fluxes, could explain the reduction of muscle membrane excitability and potassium outflow often measured in these patients. In patients with ME/CFS, the formation of heat shock proteins (HSPs) is also reduced. Because HSPs protect muscle cells against the deleterious effects of reactive oxygen species, the lack of their production could explain the augmented oxidative stress and the consecutive alterations of myopotentials which could open a way for future treatment of ME/CFS.

Copyright: © 2019 Jammes Y and Retornaz F.

Source: Jammes Y, Retornaz F. Understanding neuromuscular disorders in chronic fatigue syndrome.F1000Res. 2019 Nov 28;8. pii: F1000 Faculty Rev-2020. doi: 10.12688/f1000research.18660.1. eCollection 2019. https://www.ncbi.nlm.nih.gov/pubmed/31814961

Neuromuscular strain as a contributor to cognitive and other symptoms in chronic fatigue syndrome: hypothesis and conceptual model

Abstract:

Individuals with chronic fatigue syndrome (CFS) have heightened sensitivity and increased symptoms following various physiologic challenges, such as orthostatic stress, physical exercise, and cognitive challenges. Similar heightened sensitivity to the same stressors in fibromyalgia (FM) has led investigators to propose that these findings reflect a state of central sensitivity.

A large body of evidence supports the concept of central sensitivity in FM. A more modest literature provides partial support for this model in CFS, particularly with regard to pain. Nonetheless, fatigue and cognitive dysfunction have not been explained by the central sensitivity data thus far.

Peripheral factors have attracted attention recently as contributors to central sensitivity. Work by Brieg, Sunderland, and others has emphasized the ability of the nervous system to undergo accommodative changes in length in response to the range of limb and trunk movements carried out during daily activity. If that ability to elongate is impaired-due to movement restrictions in tissues adjacent to nerves, or due to swelling or adhesions within the nerve itself-the result is an increase in mechanical tension within the nerve. This adverse neural tension, also termed neurodynamic dysfunction, is thought to contribute to pain and other symptoms through a variety of mechanisms. These include mechanical sensitization and altered nociceptive signaling, altered proprioception, adverse patterns of muscle recruitment and force of muscle contraction, reduced intra-neural blood flow, and release of inflammatory neuropeptides. Because it is not possible to differentiate completely between adverse neural tension and strain in muscles, fascia, and other soft tissues, we use the more general term “neuromuscular strain.”

In our clinical work, we have found that neuromuscular restrictions are common in CFS, and that many symptoms of CFS can be reproduced by selectively adding neuromuscular strain during the examination. In this paper we submit that neuromuscular strain is a previously unappreciated peripheral source of sensitizing input to the nervous system, and that it contributes to the pathogenesis of CFS symptoms, including cognitive dysfunction.

 

Source: Rowe PC, Fontaine KR, Violand RL. Neuromuscular strain as a contributor to cognitive and other symptoms in chronic fatigue syndrome: hypothesis and conceptual model. Front Physiol. 2013 May 16;4:115. doi: 10.3389/fphys.2013.00115. eCollection 2013.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655286/ (Full article)

 

Fatigue brought on by malfunction of the central and peripheral nervous systems

Abstract:

Increased fatigability necessarily occurs in every patient with muscle weakness, regardless of whether the latter is due to a central or peripheral neurological disorder. The tendency for disuse to increase fatigability, as a secondary phenomenon, must also be considered; disuse affects both motoneuron recruitment and the biochemical and physiological properties of the muscle fibers. In recent studies impaired recruitment has been observed in postpolio patients, while patients with multiple sclerosis or spinal cord injury have shown, in addition, altered neuromuscular function. Findings are also presented in ALS and the chronic fatigue syndrome. In general, the most dramatic increases in fatigability take place in disorders of the peripheral nervous system and almost any cell component can be incriminated. There is a need to study fatigability systematically in neurology and rehabilitation.

 

Source: McComas AJ, Miller RG, Gandevia SC. Fatigue brought on by malfunction of the central and peripheral nervous systems. Adv Exp Med Biol. 1995;384:495-512. http://www.ncbi.nlm.nih.gov/pubmed/8585475

 

Lactate responses to exercise in chronic fatigue syndrome

Comment on: Exercise performance and fatiguability in patients with chronic fatigue syndrome. [J Neurol Neurosurg Psychiatry. 1993]

 

We were interested to read the recent account of exercise characteristics in patients with chronic fatigue syndrome by Gibson et al,’ which concluded that there was no abnormality of neuromuscular function in this condition. Patients reached the limits of exercise tolerance at lower heart rates than controls during incremental exercise to exhaustion but their peak work rates and duration of exercise did not differ significantly from the control group, although the total work done (the product of these variables) would appear to have been less; the authors had previously reported that patients with this condition showed a reduction in maximal work rate achieved in such tests.2 Despite this, plasma lactate levels at the end of exercise were as high in the patients as the controls.

In an earlier study using incremental exercise on a treadmill, Riley et a13 had found higher heart rates and increased lactate levels compared with normal controls at submaximal work rates but similarly noted no differences at peak exercise.

We have found that a proportion of patients with chronic fatigue syndrome exhibit abnormally raised lactate levels following steady state exercise at work rates below the anerobic threshold, corresponding to roughly half the peak work rates achieved in the incremental test paradigm.4 It is thus possible that lactate levels in some patients increase more rapidly than normal at lower work rates.

The cause of this apparent ‘left shift’ of the anaerobic threshold is unclear. Neither we nor Gibson et al 2 found evidence of “deconditioning” in terms of cardiac responses to exercise in our patients, and phosphorus spectroscopy of muscle in the syndrome has shown no consistent disturbance of muscle energy metabolism.5 The phenomenon may be of significance in the pathogenesis of “fatigue” in some patients, and it may be premature to conclude that neuromuscular function in all patients is normal, or that the “fatigue” is exclusively “central” in origin. Indeed, it may be presumptuous to consider chronic fatigue syndrome as a unitary entity.

You can read the rest of this comment here: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1072952/pdf/jnnpsyc00035-0134b.pdf

 

Source: Lane RJ, Woodrow D, Archard LC. Lactate responses to exercise in chronic fatigue syndrome. J Neurol Neurosurg Psychiatry. 1994 May;57(5):662-3. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1072952/