Consequences of sarcolemma fatigue on maximal muscle strength production in patients with myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Does force failure result from sarcolemma fatigue in Myalgic Encephalomyelitis patients?
  • Two groups of Myalgic Encephalomyelitis patients with or not M wave alterations were compared.
  • Maximal handgrip strength and M wave in forearm muscle were simultaneously measured.
  • Post-exercise changes in Maximal handgrip strength and M wave were positively correlated.
  • The post exercise sarcolemma fatigue measured could be the cause of muscle failure in these patients.

Background: Myalgic encephalomyelitis is an invalidating chronic disease often associated with exercise-induced alterations of muscle membrane excitability (M wave). No simultaneous measurements of maximal isometric force production and sarcolemma fatigue in the same muscle group have been previously reported. We hypothesized that M wave alterations could be partly responsible for the reduced muscle force present in this invalidating disease.

Methods: This retrospective study compared two groups of patients who presented (n = 30) or not (n = 28) alterations of M waves evoked by direct muscle stimulation during and after a cycling exercise bout. The maximal handgrip strength was measured before and after exercise, concomitantly with electromyogram recordings from flexor digitorum longus muscle. The patients also answered a questionnaire to identify eventual exacerbation of their clinical symptoms following the exercise test.

Findings: The M wave amplitude significantly decreased in muscles and the M wave duration significantly increased in the group of patients with M wave alterations after exercise. Resting values of handgrip were significantly lower in patients with exercise-induced M-wave alterations than in patients without M-wave abnormalities. In patients with exercise-induced M-wave alterations, handgrip significantly decreased after exercise and the changes in handgrip and M wave were positively correlated. The frequency of post-exertion malaise, increased fatigue, myalgia, headache and cognitive dysfunction was significantly higher in patients with M-wave alterations and variations in handgrip after exercise.

Interpretation: These data suggest that post-exercise sarcolemma fatigue often measured in patients with myalgic encephalomyelitis could be the cause of muscle failure.

Source: Frédérique Retornaz, Chloé Stavris, Yves Jammes. Consequences of sarcolemma fatigue on maximal muscle strength production in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Clinical Biomechanics, Volume 108, August 2023, 106055. https://www.sciencedirect.com/science/article/pii/S0268003323001869 (Full text)

Long-term neuromuscular consequences of SARS-Cov-2 and their similarities with myalgic encephalomyelitis/chronic fatigue syndrome: results of the retrospective CoLGEM study

Abstract:

Background: Patients with long-COVID often complain of continuous fatigue, myalgia, sleep problems, cognitive dysfunction, and post-exertional malaise. No data are available on EMG recording of evoked myopotentials (M-waves) or exercise-induced alterations in long-COVID patients, providing evidence of muscle membrane fatigue. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) develops in more than half of patients after an infectious disease, particularly viral diseases. A large proportion (around 70%) of these patients have neuromuscular disorders with M-wave alterations during and after exercise. Our hypothesis was that M-wave alterations would be also found in long-COVID patients, in association with neuromuscular symptoms, similar to ME/CFS.

Methods: This retrospective observational ColGEM (Covid LonG Encéphalomyelite Myalgique) study compared 59 patients with long-COVID and 55 ME/CFS patients with a history of severe infection who presented before the COVID pandemic. All of these patients underwent the same protocol consisting of a questionnaire focusing on neural and neuromuscular disorders and M-wave recording in the rectus femoris muscle before, during, and 10 min after a progressive cycling exercise. Maximal handgrip strength (MHGS) and maximal exercise power were also measured. The frequency of symptoms and magnitude of M-wave changes in the two groups were compared using non-parametric and parametric tests.

Results: The frequency of fatigue, myalgia, sleep problems, cognitive dysfunction, and post-exertional malaise as well as the magnitude of exercise-induced M-wave alterations were the same in the two groups. By contrast, digestive problems were less present in long-COVID. M-wave alterations were greater in ME/CFS patients as in those with long-COVID when the highest muscle strength and highest exercise performance were measured.

Conclusions: These high clinical and biological similarities between long-COVID and ME/CFS support the hypothesis that SARS-Cov-2 infection can cause ME/CFS symptoms. Trial registration Registered retrospectively.

Source: Retornaz F, Rebaudet S, Stavris C, Jammes Y. Long-term neuromuscular consequences of SARS-Cov-2 and their similarities with myalgic encephalomyelitis/chronic fatigue syndrome: results of the retrospective CoLGEM study. J Transl Med. 2022 Sep 24;20(1):429. doi: 10.1186/s12967-022-03638-7. PMID: 36153556. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03638-7 (Full text)

Altered muscle membrane potential and redox status differentiates two subgroups of patients with chronic fatigue syndrome

Abstract:

BACKGROUND: In myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), altered membrane excitability often occurs in exercising muscles demonstrating muscle dysfunction regardless of any psychiatric disorder. Increased oxidative stress is also present in many ME/CFS patients and could affect the membrane excitability of resting muscles.

METHODS: Seventy-two patients were examined at rest, during an incremental cycling exercise and during a 10-min post-exercise recovery period. All patients had at least four criteria leading to a diagnosis of ME/CFS. To explore muscle membrane excitability, M-waves were recorded during exercise (rectus femoris (RF) muscle) and at rest (flexor digitorum longus (FDL) muscle). Two plasma markers of oxidative stress (thiobarbituric acid reactive substance (TBARS) and oxidation-reduction potential (ORP)) were measured. Plasma potassium (K+) concentration was also measured at rest and at the end of exercise to explore K+ outflow.

RESULTS: Thirty-nine patients had marked M-wave alterations in both the RF and FDL muscles during and after exercise while the resting values of plasma TBARS and ORP were increased and exercise-induced K+ outflow was decreased. In contrast, 33 other patients with a diagnosis of ME/CFS had no M-wave alterations and had lower baseline levels of TBARS and ORP. M-wave changes were inversely proportional to TBARS and ORP levels.

CONCLUSIONS: Resting muscles of ME/CFS patients have altered muscle membrane excitability. However, our data reveal heterogeneity in some major biomarkers in ME/CFS patients. Measurement of ORP may help to improve the diagnosis of ME/CFS.

Trial registration Ethics Committee “Ouest II” of Angers (May 17, 2019) RCB ID: number 2019-A00611-56.

Source: Jammes Y, Adjriou N, Kipson N, Criado C, Charpin C, Rebaudet S, Stavris C, Guieu R, Fenouillet E, Retornaz F. Altered muscle membrane potential and redox status differentiates two subgroups of patients with chronic fatigue syndrome. J Transl Med. 2020 Apr 19;18(1):173. doi: 10.1186/s12967-020-02341-9. https://www.ncbi.nlm.nih.gov/pubmed/32306967

Maximal handgrip strength can predict maximal physical performance in patients with chronic fatigue

Abstract:

BACKGROUND: Maximal handgrip strength is used to predict exercise performance in healthy older subjects and in patients with chronic obstructive pulmonary disease, breast cancer or cirrhosis. Our objective was to evaluate the ability of maximal handgrip strength to predict maximal exercise performance in patients with chronic fatigue.

METHODS: Sixty-six patients with myalgic encephalomyelitis/chronic fatigue syndrome and 32 patients with chronic fatigue but no diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome were included. The maximal physical performance was measured on a cycle ergometer to measure the peak oxygen uptake and the maximal work rate. We searched for linear regressions between maximal handgrip strength and maximal performances.

FINDINGS: No significant differences in slopes and ordinates of regression lines were noted between patients with or without a diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome, allowing to pool the data. Maximal handgrip strength was significantly and positively correlated with peak oxygen uptake and maximal work rate in all patients with chronic fatigue.

INTERPRETATION: We conclude that handgrip strength can predict maximal exercise performance in patients with chronic fatigue.

Source: Jammes Y, Stavris C, Charpin C, Rebaudet S, Lagrange G, Retornaz F. Maximal handgrip strength can predict maximal physical performance in patients with chronic fatigue. Clin Biomech (Bristol, Avon). 2020 Jan 9;73:162-165. doi: 10.1016/j.clinbiomech.2020.01.003. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31986462

Understanding neuromuscular disorders in chronic fatigue syndrome

Abstract:

Muscle failure has been demonstrated in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Neurophysiological tools demonstrate the existence of both central and peripheral fatigue in these patients. Central fatigue is deduced from the reduced amplitude of myopotentials evoked by transcranial magnetic stimulation of the motor cortex as well as by the muscle response to interpolated twitches during sustained fatiguing efforts. An impaired muscle membrane conduction velocity assessed by the reduced amplitude and lengthened duration of myopotentials evoked by direct muscle stimulation is the defining feature of peripheral fatigue.

Some patients with ME/CFS show an increased oxidative stress response to exercise. The formation of lipid hydroperoxides in the sarcolemma, which alters ionic fluxes, could explain the reduction of muscle membrane excitability and potassium outflow often measured in these patients. In patients with ME/CFS, the formation of heat shock proteins (HSPs) is also reduced. Because HSPs protect muscle cells against the deleterious effects of reactive oxygen species, the lack of their production could explain the augmented oxidative stress and the consecutive alterations of myopotentials which could open a way for future treatment of ME/CFS.

Copyright: © 2019 Jammes Y and Retornaz F.

Source: Jammes Y, Retornaz F. Understanding neuromuscular disorders in chronic fatigue syndrome.F1000Res. 2019 Nov 28;8. pii: F1000 Faculty Rev-2020. doi: 10.12688/f1000research.18660.1. eCollection 2019. https://www.ncbi.nlm.nih.gov/pubmed/31814961

Association of biomarkers with health-related quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

BACKGROUND: Myalgic encephalomyelitis chronic fatigue syndrome (ME/CFS) is a common debilitating disorder associated with an intense fatigue, a reduced physical activity, and an impaired quality of life. There are no established biological markerof the syndrome. The etiology is unknown and its pathogenesis appears to be multifactorial. Various stressors, including intense physical activity, severe infection, and emotional stress are reported in the medical history of ME/CFS patients which raises the question whether any physiological and biological abnormalities usually found in these patients could be indicative of the etiology and/or the quality-of-life impairment.

METHODS: Thirty-six patients and 11 age-matched healthy controls were recruited. The following variables that appear to address common symptoms of ME/CFS were studied here: (1) muscle fatigue during exercise has been investigated by monitoring the compound muscle action potential (M-wave); (2) the excessive oxidative stress response to exercise was measured via two plasma markers (thiobarbituric acid reactive substances: TBARS; reduced ascorbic-acid: RAA); (3) a potential inflammatory component was addressed via expression of CD26 on peripheral blood mononuclear cells; (4) quality-of-life impairment was assessed using the London Handicap Scale (LHS) and the Medical Outcome Study Short Form-36 (SF-36). The medical history of each patient, including the presence of stressors such as intense sports practice, severe acute infection and/or severe emotional stress was documented.

RESULTS: We observed that: (1) there were striking differences between cases and controls with regard to three biological variables: post-exercise M-wave, TBARS variations and CD26-expression at rest; (2) each of these three variables correlated with the other two; (3) abnormalities in the biomarkers associated with health-related quality of life: the LHS score was negatively correlated with the exercise-induced TBARS increase and positively correlated with CD26-expression while the pain component of SF-36 was negatively correlated with CD26-expression; (4) the TBARS increase and the M-wave decrease were the highest, and the CD26-expression level the lowest in patients who had been submitted to infectious stressors.

CONCLUSION: In ME/CFS patients, severe alterations of the muscle excitability, the redox status, as well as the CD26-expression level are correlated with a marked impairment of the quality-of-life. They are particularly significant when infectious stressors are reported in the medical history.

 

Source: Fenouillet E, Vigouroux A, Steinberg JG, Chagvardieff A, Retornaz F, Guieu R, Jammes Y. Association of biomarkers with health-related quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med. 2016 Aug 31;14:251. doi: 10.1186/s12967-016-1010-x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006431/ (Full article)

 

Chronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins

Abstract:

OBJECTIVES: A history of high-level physical activity and/or acute infection might constitute stress factors affecting the plasma oxidant-antioxidant status and levels of heat shock proteins (HSPs) in patients with chronic fatigue syndrome (CFS).

DESIGN: This case-control study compared data from 43 CFS patients to results from a matched control group of 23 healthy sedentary subjects.

SETTING AND SUBJECTS: Five patients had no relevant previous history (group I). Eighteen had practised high-level sport (group II), and severe acute infection had been diagnosed in nine patients (group III). A combination of sport practice and infection was noted in 11 patients (group IV).

INTERVENTIONS: After examination at rest, all subjects performed a maximal cycling exercise test. Plasma levels of two markers of oxidative stress [thiobarbituric acid reactive substances (TBARS) and reduced ascorbic acid (RAA)] and both HSP27 and HSP70 were measured.

RESULTS: At rest, compared with the control group, the TBARS level was higher in groups II, III and IV patients, and the RAA level was lower in groups III and IV. In addition, HSP70 levels were significantly lower in all CFS groups, compared with controls, but negative correlations were found between resting HSP27 and HSP70 levels and the history of physical activity. After exercise, the peak level of TBARS significantly increased in groups II, III and IV, and the variations in HSP27 and HSP70 were attenuated or suppressed, with the greatest effects in groups III and IV.

CONCLUSION: The presence of stress factors in the history of CFS patients is associated with severe oxidative stress and the suppression of protective HSP27 and HSP70 responses to exercise.

© 2011 The Association for the Publication of the Journal of Internal Medicine.

 

Source: Jammes Y, Steinberg JG, Delliaux S. Chronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins. J Intern Med. 2012 Jul;272(1):74-84. doi: 10.1111/j.1365-2796.2011.02488.x. Epub 2012 Jan 4. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.2011.02488.x/full