Plasma Neurofilament Light Chain: A Potential Biomarker for Neurological Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disorder characterized by heterogeneous symptoms, which lack specific biomarkers for its diagnosis. This study aimed to investigate plasma neurofilament light chain (NfL) levels as a potential biomarker for ME/CFS and explore associations with cognitive, autonomic, and neuropathic symptoms.

Here, 67 ME/CFS patients and 43 healthy controls (HCs) underwent comprehensive assessments, including neuropsychological evaluation, autonomic nervous system (ANS) testing, and plasma NfL level analysis. ME/CFS patients exhibited significantly higher plasma NfL levels compared to HC (F = 4.30, p < 0.05). Correlations were observed between NfL levels and cognitive impairment, particularly in visuospatial perception (r = -0.42; p ≤ 0.001), verbal memory (r = -0.35, p ≤ 0.005), and visual memory (r = -0.26; p < 0.05) in ME/CFS. Additionally, higher NfL levels were associated with worsened autonomic dysfunction in these patients, specifically in parasympathetic function (F = 9.48, p ≤ 0.003).

In ME/CFS patients, NfL levels explained up to 17.2% of the results in cognitive tests. Unlike ME/CFS, in HC, NfL levels did not predict cognitive performance. Elevated plasma NfL levels in ME/CFS patients reflect neuroaxonal damage, contributing to cognitive dysfunction and autonomic impairment.

These findings support the potential role of NfL as a biomarker for neurological dysfunction in ME/CFS. Further research is warranted to elucidate underlying mechanisms and clinical implications.

Source: Azcue N, Tijero-Merino B, Acera M, Pérez-Garay R, Fernández-Valle T, Ayo-Mentxakatorre N, Ruiz-López M, Lafuente JV, Gómez Esteban JC, Del Pino R. Plasma Neurofilament Light Chain: A Potential Biomarker for Neurological Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomedicines. 2024 Jul 11;12(7):1539. doi: 10.3390/biomedicines12071539. PMID: 39062112; PMCID: PMC11274366. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274366/ (Full text)

Long COVID: Plasma levels of neurofilament light chain in mild COVID-19 patients with neurocognitive symptoms

Abstract:

It is well known the potential of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection to induce post-acute sequelae, a condition called Long COVID. This syndrome includes several symptoms, but the central nervous system (CNS) main one is neurocognitive dysfunction. Recently it has been demonstrated the relevance of plasma levels of neurofilament light chain (pNfL), as a biomarker of early involvement of the CNS in COVID-19.

The aim of this study was to investigate the relationship between pNfL in patients with post-acute neurocognitive symptoms and the potential of NfL as a prognostic biomarker in these cases. A group of 63 long COVID patients ranging from 18 to 59 years-old were evaluated, submitted to a neurocognitive battery assessment, and subdivided in different groups, according to results. Plasma samples were collected during the long COVID assessment and used for measurement of pNfL with the Single molecule array (SIMOA) assays. Levels of pNfL were significantly higher in long COVID patients with neurocognitive symptoms when compared to HC (p = 0.0031).

Long COVID patients with cognitive impairment and fatigue symptoms presented higher pNfL levels when compared to long COVID patients without these symptoms, individually and combined (p = 0.0263, p = 0.0480, and 0.0142, respectively). Correlation analysis showed that levels of cognitive lost and exacerbation of fatigue in the neurocognitive evaluation had a significative correlation with higher pNfL levels (p = 0.0219 and 0.0255, respectively). Previous reports suggested that pNfL levels are related with higher risk of severity and predict lethality of COVID-19.

Our findings demonstrate that SARS-CoV-2 infection seems to have a long-term impact on the brain, even in patients who presented mild acute disease. NfL measurements might be useful to identify CNS involvement in long COVID associated with neurocognitive symptoms and to identify who will need continuous monitoring and treatment support.

Source: Gutman E, Salvio A, Fernandes R, et al. Long COVID: Plasma levels of neurofilament light chain in mild COVID-19 patients with neurocognitive symptoms. Research Square; 2023. DOI: 10.21203/rs.3.rs-2921879/v1. https://www.researchsquare.com/article/rs-2921879/v1 (Full text)