Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection

Abstract:

Background: Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology.

Methods: Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients.

Findings: IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist.

Interpretation: SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology.

Source: Guo L, Appelman B, Mooij-Kalverda K, Houtkooper RH, van Weeghel M, Vaz FM, Dijkhuis A, Dekker T, Smids BS, Duitman JW, Bugiani M, Brinkman P, Sikkens JJ, Lavell HAA, Wüst RCI, van Vugt M, Lutter R; Amsterdam UMC COVID-19 Biobank study Group. Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection. EBioMedicine. 2023 Jul 26;94:104729. doi: 10.1016/j.ebiom.2023.104729. Epub ahead of print. PMID: 37506544; PMCID: PMC10406961. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406961/ (Full text)

Cognitive impairment after Long COVID-19: Current Evidence and Perspectives

Abstract:

COVID-19 is a respiratory infectious disease caused by the SARS-CoV-2 virus. Most patients recover after treatment, but COVID-19 treatment may lead to cognitive impairment. Recent studies have found that some recoverers experience cognitive impairments such as decreased memory and attention, and sleep disorder, indicating that COVID-19 may have longerterm effects on cognitive function.

Studies have found that COVID-19 may cause cognitive decline by damaging key brain regions such as the hippocampus and anterior cingulate cortex. Studies have also found that COVID-19 patients have active neuroinflammation, mitochondrial dysfunction, and microglial activation, suggesting that neuroinflammation, mitochondrial stress, and neurodegenerative changes may be potential mechanisms leading to cognitive impairment.

In summary, the possibility of cognitive impairment after COVID-19 treatment deserves close attention. Large-scale follow-up studies will help further explore the impact of COVID-19 on cognitive function and provide evidence to support clinical treatment and rehabilitation practices. Neuropathological and biological studies can explore precise mechanisms in-depth and provide a theoretical basis for prevention, treatment, and intervention research.

Given the risks of long-term COVID-19 and reinfection, it is necessary to integrate basic and clinical research data to maximize the maintenance of patient’s cognitive function and life quality. This also provides important experience in responding to similar public health events. This article integrates clinical and basic evidence of cognitive impairment after COVID-19 and discusses potential mechanisms and future research directions.

Source: Zhi-Tao Li, ZHANG ZHEN, Zhuoya Zhang, Zhi-Yong Wang, Hao Li. Cognitive impairment after Long COVID-19: Current Evidence and Perspectives. Front. Neurol. Sec. Neuroinfectious Diseases. Volume 14 – 2023 | doi: 10.3389/fneur.2023.1239182 https://www.frontiersin.org/articles/10.3389/fneur.2023.1239182/abstract

Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity

Abstract:

Gulf War illness (GWI) is an important exemplar of environmentally-triggered chronic multisymptom illness, and a potential model for accelerated aging. Inflammation is the main hypothesized mechanism for GWI, with mitochondrial impairment also proposed. No study has directly assessed mitochondrial respiratory chain function (MRCF) on muscle biopsy in veterans with GWI (VGWI).

We recruited 42 participants, half VGWI, with biopsy material successfully secured in 36. Impaired MRCF indexed by complex I and II oxidative phosphorylation with glucose as a fuel source (CI&CIIOXPHOS) related significantly or borderline significantly in the predicted direction to 17 of 20 symptoms in the combined sample. Lower CI&CIIOXPHOS significantly predicted GWI severity in the combined sample and in VGWI separately, with or without adjustment for hsCRP. Higher-hsCRP (peripheral inflammation) related strongly to lower-MRCF (particularly fatty acid oxidation (FAO) indices) in VGWI, but not in controls.

Despite this, whereas greater MRCF-impairment predicted greater GWI symptoms and severity, greater inflammation did not. Surprisingly, adjusted for MRCF, higher hsCRP significantly predicted lesser symptom severity in VGWI selectively. Findings comport with a hypothesis in which the increased inflammation observed in GWI is driven by FAO-defect-induced mitochondrial apoptosis.

In conclusion, impaired mitochondrial function—but not peripheral inflammation—predicts greater GWI symptoms and severity.

Source: Golomb, B.A., Sanchez Baez, R., Schilling, J.M. et al. Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity. Sci Rep 13, 10739 (2023). https://doi.org/10.1038/s41598-023-35896-w https://www.nature.com/articles/s41598-023-35896-w (Full text)

MTHFR and LC, CFS, POTS, MCAS, SIBO, EDS: Methylating the Alphabet

Abstract:

Long Covid (LC), Chronic Fatigue Syndrome (CFS), Postural Orthostatic Tachycardia Syndrome (POTS), Mast Cell Activation Syndrome (MCAS), Small Intestine Bacterial Overgrowth (SIBO), and Ehlers-Danlos Syndrome (EDS) are all loosely connected, some poorly defined, some with overlapping symptoms.

The female preponderance, the prominence of fatigue and chronic inflammation, and methylenetetrahydrofolate reductase (MTHFR) abnormalities may connect them all. Indeed differential methylation may lie at the root. Two – EDS and MTHFR – are genetic. But epigenetic factors may ultimately determine their phenotypic expression.

Oxidative stress, overloaded mitochondria, an antioxidant and nutrient shortfall, and suboptimal gut microbiome appear to be the primary determinants. A deep dive into the folate and methionine cycles is undertaken in an attempt to connect these syndromes.

The active forms of vitamin D and vitamins B2,3,6,9,12 are shown to be biochemically integral to optimal methylation and control of the epigenome. Their status largely determines the symptoms of abnormal MTHFR in all its phenotypes. The wider implications for aging, cancer, cardiovascular disease, neurodegenerative disease, and autoimmune disease are briefly explored.

Source: Chambers P. MTHFR and LC, CFS, POTS, MCAS, SIBO, EDS: Methylating the Alphabet. Preprint from 30 Jun 2023. https://www.qeios.com/read/ZPYS4F (Full text)

Increased circulating fibronectin, depletion of natural IgM and heightened EBV, HSV-1 reactivation in ME/CFS and long COVID

Abstract:

Myalgic Encephalomyelitis/ Chronic Fatigue syndrome (ME/CFS) is a complex, debilitating, long-term illness without a diagnostic biomarker. ME/CFS patients share overlapping symptoms with long COVID patients, an observation which has strengthened the infectious origin hypothesis of ME/CFS. However, the exact sequence of events leading to disease development is largely unknown for both clinical conditions.

Here we show antibody response to herpesvirus dUTPases, particularly to that of Epstein-Barr virus (EBV) and HSV-1, increased circulating fibronectin (FN1) levels in serum and depletion of natural IgM against fibronectin ((n)IgM-FN1) are common factors for both severe ME/CFS and long COVID. We provide evidence for herpesvirus dUTPases-mediated alterations in host cell cytoskeleton, mitochondrial dysfunction and OXPHOS.

Our data show altered active immune complexes, immunoglobulin-mediated mitochondrial fragmentation as well as adaptive IgM production in ME/CFS patients. Our findings provide mechanistic insight into both ME/CFS and long COVID development. Finding of increased circulating FN1 and depletion of (n)IgM-FN1 as a biomarker for the severity of both ME/CFS and long COVID has an immediate implication in diagnostics and development of treatment modalities.

Source: Zheng Liu, Claudia Hollmann, Sharada Kalanidhi, Arnhild Grothey, Samuel Keating, Irene Mena-Palomo, Stephanie Lamer, Andreas Schlosser, Agnes Kaiping, Carsten Scheller, Franziska Sotzny, Anna Horn, Carolin Nuernberger, Vladimir Cejka, Boshra Afshar, Thomas Bahmer, Stefan Schreiber, Joerg Janne Vehreschild, Olga Milljukov, Christian Schaefer, Luzie Kretzler, Thomas Keil, Jens-Peter Reese, Felizitas A Eichner, Lena Schmidbauer, Peter U Heuschmann, Stefan Stoerk, Caroline Morbach, Gabriela Riemekasten, Niklas Beyersdorf, Carmen Scheibenbogen, Robert K Naviaux, Marshall Williams, Maria E Ariza, Bhupesh Kumar Prusty. Increased circulating fibronectin, depletion of natural IgM and heightened EBV, HSV-1 reactivation in ME/CFS and long COVID. medRxiv 2023.06.23.23291827; doi: https://doi.org/10.1101/2023.06.23.23291827 https://www.medrxiv.org/content/10.1101/2023.06.23.23291827v1 (Full text available as PDF file)

The plasma metabolome of long COVID-19 patients two years after infection

Abstract:

Background One of the major challenges currently faced by global health systems is the prolonged COVID-19 syndrome (also known as “long COVID”) which has emerged as a consequence of the SARS-CoV-2 epidemic. The World Health Organization (WHO) recognized long COVID as a distinct clinical entity in 2021. It is estimated that at least 30% of patients who have had COVID-19 will develop long COVID. This has put a tremendous strain on still-overstretched healthcare systems around the world.

Methods In this study, our goal was to assess the plasma metabolome in a total of 108 samples collected from healthy controls, COVID-19 patients, and long COVID patients recruited in Mexico between 2020 and 2022. A targeted metabolomics approach using a combination of LC-MS/MS and FIA MS/MS was performed to quantify 108 metabolites. IL-17 and leptin concentrations were measured in long COVID patients by immunoenzymatic assay.

Results The comparison of paired COVID-19/post-COVID-19 samples revealed 53 metabolites that were statistically different (FDR < 0.05). Compared to controls, 29 metabolites remained dysregulated even after two years. Notably, glucose, kynurenine, and certain acylcarnitines continued to exhibit altered concentrations similar to the COVID-19 phase, while sphingomyelins and long saturated and monounsaturated LysoPCs, phenylalanine, butyric acid, and propionic acid levels normalized. Post-COVID-19 patients displayed a heterogeneous metabolic profile, with some showing no symptoms while others exhibiting a variable number of symptoms. Lactic acid, lactate/pyruvate ratio, ornithine/citrulline ratio, sarcosine, and arginine were identified as the most relevant metabolites for distinguishing patients with more complicated long COVID evolution. Additionally, IL-17 levels were significantly increased in these patients.

Conclusions Mitochondrial dysfunction, redox state imbalance, impaired energy metabolism, and chronic immune dysregulation are likely to be the main hallmarks of long COVID even two years after acute COVID-19 infection.

Source: Yamilé López-Hernández, Joel Monárrez Aquino, David Alejandro García López, Jiamin Zheng, Juan Carlos Borrego, Claudia Torres-Calzada, José Pedro Elizalde-Díaz, Rupasri Mandal, Mark Berjanskii, Eduardo Martínez-Martínez, Jesús Adrián López, David S. Wishart. The plasma metabolome of long COVID-19 patients two years after infection. doi: https://doi.org/10.1101/2023.05.03.23289456 (Full text)

Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder

Abstract:

Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge.
One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms.
It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.
Source: Chen T-H, Chang C-J, Hung P-H. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. International Journal of Molecular Sciences. 2023; 24(9):8034. https://doi.org/10.3390/ijms24098034 https://www.mdpi.com/1422-0067/24/9/8034 (Full text)

Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior

Abstract:

Prion is a term used to describe a protein infectious particle responsible for several neurodegenerative diseases in mammals, e.g., Creutzfeldt-Jakob disease. The novelty is that it is protein based infectious agent not involving a nucleic acid genome as found in viruses and bacteria.

Prion disorders exhibit, in part, incubation periods, neuronal loss, and induce abnormal folding of specific normal cellular proteins due to enhancing reactive oxygen species associated with mitochondria energy metabolism. These agents may also induce memory, personality and movement abnormalities as well as depression, confusion and disorientation.

Interestingly, some of these behavioral changes also occur in COVID-19 and mechanistically include mitochondrial damage caused by SARS-CoV-2 and subsequent production of reactive oxygen species. Taken together, we surmise, in part, long COVID may involve the induction of spontaneous prion emergence, especially in individuals susceptible to its origin may thus explain some of its manisfestions post-acute viral infection.

Source: Stefano GB, Büttiker P, Weissenberger S, Anders M, Raboch J, Ptacek R, Kream RM. Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior. Cell Mol Neurobiol. 2023 Mar 28:1–6. doi: 10.1007/s10571-023-01342-8. Epub ahead of print. PMID: 36977809; PMCID: PMC10047479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047479/ (Full text)

The Behavior of Muscle Oxygen Saturation, Oxy and Deoxy Hemoglobin during a Fatigue Test in Fibromyalgia

Abstract:

Previous studies have reported that people with fibromyalgia (FM) could suffer from mitochondrial dysfunction. However, the consumption of muscle oxygen during physical exercise has been poorly studied. Therefore, this study aimed to explore the response of muscle oxygen during a fatigue protocol in people with FM and healthy controls (HC). In addition, the peak torque and the total work were assessed.

A total of 31 participants (eighteen were people with fibromyalgia and thirteen were healthy controls) were enrolled in this cross-sectional study. All the participants underwent a fatigue protocol consisting of 20 repetitions at 180°·s−1 of quadriceps flexions and extensions using a Biodex System 3. The muscle oxygen saturation (SmO2), total hemoglobin (THb), deoxygenated hemoglobin (HHb) and oxygenated hemoglobin (O2Hb) values were measured using a portable near-infrared spectroscopy (NIRS) device. Significant differences between people with FM and healthy controls were found at baseline: SmO2 (FM: 56.03 ± 21.36; HC: 77.41 ± 10.82; p = 0.036), O2Hb (FM: 6.69 ± 2.59; HC: 9.37 ± 1.31; p = 0.030) and HHb (FM: 5.20 ± 2.51; HC: 2.73 ± 1.32; p = 0.039); during the fatigue protocol: SmO2 (FM: 48.54 ± 19.96; HC: 58.87 ± 19.72; p = 0.038), O2Hb (FM: 5.70 ± 2.34; HC: 7.06 ± 2.09; p = 0.027) and HHb (FM: 5.69 ± 2.65; HC: 4.81 ± 2.39; p = 0.048); and in the recovery at three min and six min for SmO2, O2Hb and HHb (p < 0.005).

Furthermore, healthy control values of SmO2, O2Hb and HHb have been significantly altered by the fatigue protocol (p < 0.005). In contrast, people with FM did not show any significant alteration in these values. Moreover, significant differences were found in the peak torque at extension (FM: 62.48 ± 24.45; HC: 88.31 ± 23.51; p = 0.033) and flexion (FM: 24.16 ± 11.58; HC: 42.05 ± 9.85; p = 0.010), and the total work performed at leg extension (FM: 1039.78 ± 434.51; HC: 1535.61 ± 474.22; p = 0.007) and flexion (FM: 423.79 ± 239.89; HC: 797.16 ± 194.37; p = 0.005).

Source: Villafaina S, Tomas-Carus P, Silva V, Costa AR, Fernandes O, Parraca JA. The Behavior of Muscle Oxygen Saturation, Oxy and Deoxy Hemoglobin during a Fatigue Test in Fibromyalgia. Biomedicines. 2023 Jan 4;11(1):132. doi: 10.3390/biomedicines11010132. PMID: 36672640; PMCID: PMC9856161. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856161/ (Full text)

Understanding Long COVID; Mitochondrial Health and Adaptation—Old Pathways, New Problems

Abstract:

Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as “brain fog”, fatigue and clotting problems. Explanations for “long COVID” include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery.
The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can “tip” the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction.
Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer’s metabolism needs to be “tipped” back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Source: Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation—Old Pathways, New Problems. Biomedicines. 2022; 10(12):3113. https://doi.org/10.3390/biomedicines10123113 https://www.mdpi.com/2227-9059/10/12/3113 (Full text)