Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic-pituitary-adrenal axis and mitochondrial bioenergetics in rats

Abstract:

ETHNOPHARMACOLOGICAL RELEVANCE: Shilajit has been used as a rejuvenator for ages in Indian ancient traditional medicine and has been validated for a number of pharmacological activities.

AIM OF THE STUDY: The effect of processed shilajit which was standardized to dibenzo-α-pyrones (DBPs;0.43% w/w), DBP-chromoproteins (DCPs; 20.45% w/w) and fulvic acids (56.75% w/w) was evaluated in a rat model of chronic fatigue syndrome (CFS). The mitochondrial bioenergetics and the activity of hypothalamus-pituitary-adrenal (HPA) axis were evaluated for the plausible mechanism of action of shilajit.

MATERIALS AND METHODS: CFS was induced by forcing the rats to swim for 15mins for 21 consecutive days. The rats were treated with shilajit (25, 50 and 100mg/kg) for 21 days before exposure to stress procedure. The behavioral consequence of CFS was measured in terms of immobility and the climbing period. The post-CFS anxiety level was assessed by elevated plus maze (EPM) test. Plasma corticosterone and adrenal gland weight were estimated as indices of HPA axis activity. Analysis of mitochondrial complex chain enzymes (Complex I, II, IV and V) and mitochondrial membrane potential (MMP) in prefrontal cortex (PFC) were performed to evaluate the mitochondrial bioenergetics and integrity respectively.

RESULTS: Shilajit reversed the CFS-induced increase in immobility period and decrease in climbing behavior as well as attenuated anxiety in the EPM test. Shilajit reversed CFS-induced decrease in plasma corticosterone level and loss of adrenal gland weight indicating modulation of HPA axis. Shilajit prevented CFS-induced mitochondrial dysfunction by stabilizing the complex enzyme activities and the loss of MMP. Shilajit reversed CFS-induced mitochondrial oxidative stress in terms of NO concentration and, LPO, SOD and catalase activities.

CONCLUSION: The results indicate that shilajit mitigates the effects of CFS in this model possibly through the modulation of HPA axis and preservation of mitochondrial function and integrity. The reversal of CFS-induced behavioral symptoms and mitochondrial bioenergetics by shilajit indicates mitochondria as a potential target for treatment of CFS.

Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

 

Source: Surapaneni DK, Adapa SR, Preeti K, Teja GR, Veeraragavan M, Krishnamurthy S. Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic-pituitary-adrenal axis and mitochondrial bioenergetics in rats. J Ethnopharmacol. 2012 Aug 30;143(1):91-9. doi: 10.1016/j.jep.2012.06.002. Epub 2012 Jul 6. https://www.ncbi.nlm.nih.gov/pubmed/22771318

 

Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity

Abstract:

BACKGROUND: The aim of this study was to investigate the possibility that a decreased mitochondrial ATP synthesis causes muscular and mental fatigue and plays a role in the pathophysiology of the chronic fatigue syndrome (CFS/ME).

METHODS: Female patients (n = 15) and controls (n = 15) performed a cardiopulmonary exercise test (CPET) by cycling at a continuously increased work rate till maximal exertion. The CPET was repeated 24 h later. Before the tests, blood was taken for the isolation of peripheral blood mononuclear cells (PBMC), which were processed in a special way to preserve their oxidative phosphorylation, which was tested later in the presence of ADP and phosphate in permeabilized cells with glutamate, malate and malonate plus or minus the complex I inhibitor rotenone, and succinate with rotenone plus or minus the complex II inhibitor malonate in order to measure the ATP production via Complex I and II, respectively. Plasma CK was determined as a surrogate measure of a decreased oxidative phosphorylation in muscle, since the previous finding that in a group of patients with external ophthalmoplegia the oxygen consumption by isolated muscle mitochondria correlated negatively with plasma creatine kinase, 24 h after exercise.

RESULTS: At both exercise tests the patients reached the anaerobic threshold and the maximal exercise at a much lower oxygen consumption than the controls and this worsened in the second test. This implies an increase of lactate, the product of anaerobic glycolysis, and a decrease of the mitochondrial ATP production in the patients. In the past this was also found in patients with defects in the mitochondrial oxidative phosphorylation. However the oxidative phosphorylation in PBMC was similar in CFS/ME patients and controls. The plasma creatine kinase levels before and 24 h after exercise were low in patients and controls, suggesting normality of the muscular mitochondrial oxidative phosphorylation.

CONCLUSION: The decrease in mitochondrial ATP synthesis in the CFS/ME patients is not caused by a defect in the enzyme complexes catalyzing oxidative phosphorylation, but in another factor.

TRIAL REGISTRATION: CLINICAL TRIALS REGISTRATION NUMBER: NL16031.040.07.

 

Source: Vermeulen RC, Kurk RM, Visser FC, Sluiter W, Scholte HR. Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J Transl Med. 2010 Oct 11;8:93. doi: 10.1186/1479-5876-8-93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964609/ (Full article)

 

Acute phase phospholipids related to the cardiolipin of mitochondria in the sera of patients with chronic fatigue syndrome (CFS), chronic Ciguatera fish poisoning (CCFP), and other diseases attributed to chemicals, Gulf War, and marine toxins

Abstract:

This study examined 328 CFS sera in a study with 17 CCFP, 8 Gulf War Veterans (GWV), 24 Prostate Cancer (PC), and 52 normal sera in the modified Membrane Immunobead Assay (MIA) procedure for CTX. Three hundred and twenty-eight CFS patients’ sera were examined by the modified MIA with purified MAb-CTX and 91.2% gave a titre > or =1:40. 76% of the 17 CCFP sera samples and 100% of the 8 GWV sera samples also had a titre > or =1:40. 92.3% of 52 normal sera showed titres of 1:20 or less, while 4 gave titres of > or =1:40.

In addition, 41 sera were examined for Anti-Cardiolipin (aCL) by a commercial ELISA procedure with 87.8% demonstrating IgM, IgM+IgA, or IgM+IgG aCL antibodies. These results showed mostly the IgM aCL antibody alone in the sera samples. In addition, 41 serum samples were examined for aCL, with 37 showing positive for aCL, representing 90.2% positive for the three disease categories examined: CFS, CCFP and GWV. Examination for antiMitochondrial-M2 autoantibody (aM-M2) in 28 patients (CFS (18), CCFP (5), and GWV (5)) was negative for aM-M2.

Inhibition analysis with antigens, CTX, CFS “Acute Phase Lipids”, commercial Cardiolipin (CL) and 1,2-Dipalmitoyl-sn-Glycero-3-[Phospho-L-Serine] (PS) and antibodies, MAb-CTX and aCL from patients’ serum show that the phospholipids in CL and CTX are antigenically indistinguishable with antibodies MAb-CTX and CFS-aCL. Preliminary chemical analyses have shown the lipids to be phospholipids associated with CL of the mitochondria.

We designate this “Acute Phase Lipid” comparable to “Acute Phase Proteins” (C-reactive protein (CRP) and Serum Amyloid A (SAA)) in inflammatory conditions.

(Copyright ) 2008 Wiley-Liss, Inc.

 

Source: Hokama Y, Empey-Campora C, Hara C, Higa N, Siu N, Lau R, Kuribayashi T, Yabusaki K. Acute phase phospholipids related to the cardiolipin of mitochondria in the sera of patients with chronic fatigue syndrome (CFS), chronic Ciguatera fish poisoning (CCFP), and other diseases attributed to chemicals, Gulf War, and marine toxins. J Clin Lab Anal. 2008;22(2):99-105. doi: 10.1002/jcla.20217. https://www.ncbi.nlm.nih.gov/pubmed/18348309

 

Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is a multisystem disease, the pathogenesis of which remains undetermined.

AIMS: To test the hypothesis that there are reproducible abnormalities of gene expression in patients with CFS compared with normal healthy persons.

METHODS: To gain further insight into the pathogenesis of this disease, gene expression was analysed in peripheral blood mononuclear cells from 25 patients with CFS diagnosed according to the Centers for Disease Control criteria and 25 normal blood donors matched for age, sex, and geographical location, using a single colour microarray representing 9522 human genes. After normalisation, average difference values for each gene were compared between test and control groups using a cutoff fold difference of expression > or = 1.5 and a p value of 0.001. Genes showing differential expression were further analysed using Taqman real time polymerase chain reaction (PCR) in fresh samples.

RESULTS: Analysis of microarray data revealed differential expression of 35 genes. Real time PCR confirmed differential expression in the same direction as array results for 16 of these genes, 15 of which were upregulated (ABCD4, PRKCL1, MRPL23, CD2BP2, GSN, NTE, POLR2G, PEX16, EIF2B4, EIF4G1, ANAPC11, PDCD2, KHSRP, BRMS1, and GABARAPL1) and one of which was downregulated (IL-10RA). This profile suggests T cell activation and perturbation of neuronal and mitochondrial function. Upregulation of neuropathy target esterase and eukaryotic translation initiation factor 4G1 may suggest links with organophosphate exposure and virus infection, respectively.

CONCLUSION: These results suggest that patients with CFS have reproducible alterations in gene regulation.

 

Source: Kaushik N, Fear D, Richards SC, McDermott CR, Nuwaysir EF, Kellam P, Harrison TJ, Wilkinson RJ, Tyrrell DA, Holgate ST, Kerr JR. Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome. J Clin Pathol. 2005 Aug;58(8):826-32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1770875/ (Full article)

 

Phosphate diabetes in patients with chronic fatigue syndrome

Abstract:

Phosphate depletion is associated with neuromuscular dysfunction due to changes in mitochondrial respiration that result in a defect of intracellular oxidative metabolism. Phosphate diabetes causes phosphate depletion due to abnormal renal re-absorption of phosphate be the proximal renal tubule. Most of the symptoms presented by patients with phosphate diabetes such as myalgia, fatigue and mild depression, are also common in patients with chronic fatigue syndrome, but this differential diagnosis has not been considered.

We investigated the possible association between chronic fatigue syndrome and phosphate diabetes in 87 patients who fulfilled the criteria for chronic fatigue syndrome. Control subjects were 37 volunteers, who explicitly denied fatigue and chronic illness on a screening questionnaire.

Re-absorption of phosphate by the proximal renal tubule, phosphate clearance and renal threshold phosphate concentration were the main outcome measures in both groups. Of the 87 patients with chronic fatigue syndrome, nine also fulfilled the diagnostic criteria for phosphate diabetes.

In conclusion, we report a previously undefined relationship between chronic fatigue syndrome and phosphate diabetes. Phosphate diabetes should be considered in differential diagnosis with chronic fatigue syndrome; further studies are needed to investigate the incidence of phosphate diabetes in patients with chronic fatigue syndrome and the possible beneficial effect of vitamin D and oral phosphate supplements.

Comment in: Chronic fatigue syndrome. [Postgrad Med J. 1998]

 

Source: De Lorenzo F, Hargreaves J, Kakkar VV. Phosphate diabetes in patients with chronic fatigue syndrome. Postgrad Med J. 1998 Apr;74(870):229-32. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360873/ (Full article)

 

Heterogeneity in chronic fatigue syndrome: evidence from magnetic resonance spectroscopy of muscle

Abstract:

It has been shown previously that some patients with chronic fatigue syndrome show an abnormal increase in plasma lactate following a short period of moderate exercise, in the sub-anaerobic threshold exercise test (SATET).

This cannot be explained satisfactorily by the effects of ‘inactivity’ or ‘deconditioning’, and patients with abnormal lactate responses to exercise (SATET +ve) have been found to have significantly fewer Type 1 muscle fibres in quadriceps biopsies than SATET -ve patients. We performed phosphorus magnetic resonance spectroscopy on forearm muscles of 10 SATET +ve patients, 9 SATET -ve patients and 13 sedentary volunteers.

There were no differences in resting spectra between these groups but at the end of exercise, intracellular pH in the SATET +ve patients was significantly lower than in both the SATET -ve cases and controls (P < 0.03), and the SATET +ve patients also showed a significantly lower ATP synthesis rate during recovery (P < 0.01), indicating impaired mitochondrial oxidative phosphorylation.

These observations support other evidence which indicates that chronic fatigue syndrome is a heterogeneous disorder, and confirms the view that some chronic fatigue syndrome patients have a peripheral component to their fatigue.

 

Source: Lane RJ, Barrett MC, Taylor DJ, Kemp GJ, Lodi R. Heterogeneity in chronic fatigue syndrome: evidence from magnetic resonance spectroscopy of muscle. Neuromuscul Disord. 1998 May;8(3-4):204-9. http://www.ncbi.nlm.nih.gov/pubmed/9631403

 

Muscle fibre characteristics and lactate responses to exercise in chronic fatigue syndrome

Abstract:

OBJECTIVES: To examine the proportions of type 1 and type 2 muscle fibres and the degree of muscle fibre atrophy and hypertrophy in patients with chronic fatigue syndrome in relation to lactate responses to exercise, and to determine to what extent any abnormalities found might be due to inactivity.

METHODS: Quadriceps needle muscle biopsies were obtained from 105 patients with chronic fatigue syndrome and the proportions of type 1 and 2 fibres and fibre atrophy and hypertrophy factors were determined from histochemical preparations, using a semiautomated image analysis system. Forty one randomly selected biopsies were also examined by electron microscopy. Lactate responses to exercise were measured in the subanaerobic threshold exercise test (SATET).

RESULTS: Inactivity would be expected to result in a shift to type 2 fibre predominance and fibre atrophy, but type 1 predominance (23%) was more common than type 2 predominance (3%), and fibre atrophy was found in only 10.4% of cases. Patients with increased lactate responses to exercise did have significantly fewer type 1 muscle fibres (p<0.043 males, p<0.0003 females), but there was no evidence that this group was less active than the patients with normal lactate responses. No significant ultrastructural abnormalities were found.

CONCLUSION: Muscle histometry in patients with chronic fatigue syndrome generally did not show the changes expected as a result of inactivity. However, patients with abnormal lactate responses to exercise had a significantly lower proportion of mitochondria rich type 1 muscle fibres.

 

Source: Lane RJ, Barrett MC, Woodrow D, Moss J, Fletcher R, Archard LC. Muscle fibre characteristics and lactate responses to exercise in chronic fatigue syndrome. J Neurol Neurosurg Psychiatry. 1998 Mar;64(3):362-7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169994/ (Full article)

 

Reduced oxidative muscle metabolism in chronic fatigue syndrome

Abstract:

The purpose of this study was to determine if chronic fatigue syndrome (CSF) is characterized by abnormalities in oxidative muscle metabolism. Patients with CFS according to Centers for Disease Control (CDC) criteria (n = 22) were compared to normal sedentary subjects (n = 15).

CFS patients were also tested before and 2 days after a maximal treadmill test. Muscle oxidative capacity was measured as the maximal rate of postexercise phosphocreatine (PCr) resynthesis using the ADP model (Vmax) in the calf muscles using 31P magnetic resonance spectroscopy. Vmax was significantly reduced in CFS patients (39.6 +/- 2.8 mmol/L/min, mean +/- SE) compared to controls (53.8 +/- 2.8 mmol/L/min). Two days postexercise there was no change in resting inorganic phosphate (Pi)/PCr or Vmax in the CFS patients (n = 14).

In conclusion, oxidative metabolism is reduced in CFS patients compared to sedentary controls. In addition, a single bout of strenuous exercise did not cause a further reduction in oxidative metabolism, or alter resting Pi/PCr ratios.

Comment in: Chronic fatigue syndrome and skeletal muscle mitochondrial function. [Muscle Nerve. 1997]

 

Source: McCully KK, Natelson BH, Iotti S, Sisto S, Leigh JS Jr. Reduced oxidative muscle metabolism in chronic fatigue syndrome. Muscle Nerve. 1996 May;19(5):621-5. http://www.ncbi.nlm.nih.gov/pubmed/8618560

 

Sensory characterization of somatic parietal tissues in humans with chronic fatigue syndrome

Abstract:

Patients with chronic fatigue syndrome (CFS) mainly complain of symptoms in the musculoskeletal domain (myalgias, fatigue). In 21 CFS patients the deep (muscle) versus superficial (skin, subcutis) sensitivity to pain was explored by measuring pain thresholds to electrical stimulation unilaterally in the deltoid, trapezius and quadriceps and overlying skin and subcutis in comparison with normal subjects.

Thresholds in patients were normal in skin and subcutis but significantly lower than normal (hyperalgesia) in muscles (P < 0.001) in all sites. The selective muscle hypersensitivity corresponded also to fiber abnormalities at muscle biopsy (quadriceps) performed in nine patients which were absent in normal subjects (four cases): morphostructural alterations of the sarchomere, fatty degeneration and fibrous regeneration, inversion of the cytochrome oxidase/succinate dehydrogenase ratio, pleio/polymorphism and monstruosity of mitochondria, reduction of some mitochondrial enzymatic activities and increments of common deletion of 4977 bp of mitochondrial DNA 150-3000 times the normal values.

By showing both sensory (diffuse hyperalgesia) and anatomical (degenerative picture) changes at muscle level, the results suggest a role played by peripheral mechanisms in the genesis of CFS symptoms. They would exclude the heightened perception of physiological signals from all districts hypothesized by some authors, especially as the hyperalgesia is absent in skin/subcutis.

 

Source: Vecchiet L, Montanari G, Pizzigallo E, Iezzi S, de Bigontina P, Dragani L, Vecchiet J, Giamberardino MA. Sensory characterization of somatic parietal tissues in humans with chronic fatigue syndrome. Neurosci Lett. 1996 Apr 19;208(2):117-20. http://www.ncbi.nlm.nih.gov/pubmed/8859904

 

Investigation by polymerase chain reaction of enteroviral infection in patients with chronic fatigue syndrome

Abstract:

1. Chronic fatigue syndrome is characterized by muscle fatigue and pain at rest, symptoms which are usually exacerbated with exercise. Although various studies have shown minor, non-specific morphological and biochemical changes in muscle of patients with chronic fatigue syndrome, no consistent defect has been identified. Some have suggested that an enteroviral infection in muscle may cause the chronic muscle fatigue seen in patients with chronic fatigue syndrome, with acute infection directly and irreversibly impairing mitochondrial function, and persistent infection depressing muscle protein synthesis and metabolism.

2. To clarify the involvement of enterovirus infection in chronic fatigue syndrome, muscle biopsies from a group of patients with chronic fatigue syndrome were examined for the presence of enteroviral RNA by reverse transcriptase-polymerase chain reaction techniques in relation to functional studies of muscle mitochondria and the muscle RNA/DNA ratio.

3. Fifty-eight percent of patients reported an uncharacterized ‘viral infection’ before the onset of their illness, but none of the muscle samples from 34 patients contained detectable amounts of enteroviral RNA. Muscle tissue had a general reduction in the RNA/DNA ratio and mitochondrial enzyme activities with no specific abnormality in the activity of enzymes encoded partially on the mitochondrial genome (cytochrome-c oxidase) or nuclear genome (citrate synthase, succinate reductase).

4. These data provide no evidence of an enteroviral infection in muscle of patients with chronic fatigue syndrome, although this does not exclude a role of enterovirus in initiating the disease process. The general reduction in RNA/DNA ratio and mitochondrial enzyme activities is consistent with a general reduction in habitual activity.

 

Source: McArdle A, McArdle F, Jackson MJ, Page SF, Fahal I, Edwards RH. Investigation by polymerase chain reaction of enteroviral infection in patients with chronic fatigue syndrome. Clin Sci (Lond). 1996 Apr;90(4):295-300. http://www.ncbi.nlm.nih.gov/pubmed/8777836