Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review

Abstract:

Background: Up to 30% of people infected with SARS-CoV-2 report disabling symptoms 2 years after the infection. Over 100 persistent symptoms have been associated with Post-Acute COVID-19 Symptoms (PACS) and/or long-COVID, showing a significant clinical heterogeneity. To develop effective, patient-targeted treatment, a better understanding of underlying mechanisms is needed. Epigenetics has helped elucidating the pathophysiology of several health conditions and it might help unravelling inter-individual differences in patients with PACS and long-COVID. As accumulating research is exploring epigenetic mechanisms in PACS and long-COVID, we systematically summarized the available literature on the topic.

Methods: We interrogated five databases (Medline, Embase, Web of Science, Scopus and medXriv/bioXriv) and followed PRISMA and SWiM guidelines to report our results.

Results: Eight studies were included in our review. Six studies explored DNA methylation in PACS and/or long-COVID, while two studies explored miRNA expression in long-COVID associated with lung complications. Sample sizes were mostly small and study quality was low or fair. The main limitation of the included studies was a poor characterization of the patient population that made a homogeneous synthesis of the literature challenging. However, studies on DNA methylation showed that mechanisms related to the immune and the autonomic nervous system, and cell metabolism might be implicated in the pathophysiology of PACS and long-COVID.

Conclusion: Epigenetic changes might help elucidating PACS and long-COVID underlying mechanisms, aid subgrouping, and point towards tailored treatments. Preliminary evidence is promising but scarce. Biological and epigenetic research on long-COVID will benefit millions of people suffering from long-COVID and has the potential to be transferable and benefit other conditions as well, such as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We urge future research to employ longitudinal designs and provide a better characterization of included patients.

Source: Shekhar Patil M, Richter E, Fanning L, Hendrix J, Wyns A, Barrero Santiago L, Nijs J, Godderis L, Polli A. Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review. Expert Rev Mol Med. 2024 Oct 22;26:e29. doi: 10.1017/erm.2024.32. PMID: 39435694. https://www.cambridge.org/core/journals/expert-reviews-in-molecular-medicine/article/epigenetic-changes-in-patients-with-postacute-covid19-symptoms-pacs-and-longcovid-a-systematic-review/BCF992CF0E491FC0AD0FEDC3A8AFFD4B (Full text)

DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients

Abstract:

Purpose: Fibromyalgia (FM) and Chronic Fatigue Syndrome (CFS) affect 0.4% and 1% of society, respectively, and the prevalence of these pain syndromes is increasing. To date, no strong association between these syndromes and the genetic background of affected individuals has been shown. Therefore, it is plausible that epigenetic changes might play a role in the development of these syndromes.

Patients and Methods: Three previous studies have attempted to elaborate the involvement of genome-wide methylation changes in blood cells in the development of fibromyalgia and chronic fatigue syndrome. These studies included 22 patients with fibromyalgia and 127 patients with CFS, and the results of the studies were largely discrepant. Contradicting results of those studies may be attributed to differences in the omics data analysis approaches used in each study. We reanalyzed the data collected in these studies using an updated and coherent data-analysis framework.

Results: Overall, the methylation changes that we observed overlapped with previous results only to some extent. However, the gene set enrichment analyses based on genes annotated to methylation changes identified in each of the analyzed datasets were surprisingly coherent and uniformly associated with the physiological processes that, when affected, may result in symptoms characteristic of fibromyalgia and chronic fatigue syndrome

Conclusion: Methylomes of the blood cells of patients with FM and CFS in three independent studies have shown methylation changes that appear to be implicated in the pathogenesis of these syndromes.

Source: Przybylowicz PK, Sokolowska KE, Rola H, Wojdacz TK. DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients. J Pain Res. 2023;16:4025-4036 https://doi.org/10.2147/JPR.S439412 https://www.dovepress.com/dna-methylation-changes-in-blood-cells-of-fibromyalgia-and-chronic-fat-peer-reviewed-fulltext-article-JPR (Full text)

Vitamin B12 as an epidrug for regulating peripheral blood biomarkers in long COVID-associated visuoconstructive deficit

Abstract:

Approximately four months after recovering from a mild COVID-19 infection, around 25% of individuals developed visuoconstructive deficit (VCD), which was found to be correlated with an increase in peripheral immune markers and alterations in structural and metabolic brain imaging. Recently, it has been demonstrated that supplemental vitamin B12 regulates hyperinflammation during moderate and severe COVID-19 through methyl-dependent epigenetic mechanisms.

Herein, whole peripheral blood cultures were produced using samples obtained from patients with confirmed persistent VCD, and controls without impairment, between 10 and 16 months after mild COVID-19. This experimental model was used to assess the leukocyte expression patterns of 11 biomarkers previously associated with VCD in long COVID and explore the potential of pharmacological B12 in regulating these genes. The results showed that patients with persistent VCD displayed continued upregulation of CCL11 and LIF compared to controls.

It is worth noting that elevated serum levels of CCL11 have been previously linked to age-related neurodegenerative diseases. Notably, the addition of 1 nM of vitamin B12 to blood cultures from individuals with VCD normalized the mRNA levels of CCL11, upregulated the neuroprotective HGF, and, to a lesser extent, downregulated CSF2 and CXCL10. There was an inverse correlation observed between CCL11 mRNA levels and methylation levels of specific cytosines in its promoter region.

These findings underscore the significance of systemic inflammation in persistent VCD associated with long COVID. Moreover, the study provides evidence suggesting that B12, acting as an epidrug, shows promise as a therapeutic approach for addressing this cognitive impairment.

Source: Larissa Cassiano, Jonas Paula, Daniela Rosa et al. Vitamin B12 as an epidrug for regulating peripheral blood biomarkers in long COVID-associated visuoconstructive deficit, 11 October 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3158180/v1] https://www.researchsquare.com/article/rs-3158180/v1 (Full text)

The Long Covid-19 Syndrome the Spike Protein and Stem Cells, the Underrated Role of Retrotransposons, a Working Hypothesis

Abstract

Coronavirus disease-2019 (COVID-19) was seen as a respiratory disease, however, an increasing number of reports indicated that the spike protein could also be the cause of the long-term post-infectious conditions known as Long-COVID characterized by a group of unresponsive idiopathic severe neuro, cardio-vascular disorders, including strokes, cardiopathies, neuralgias, fibromyalgia, and Parkinson’s like-disease. Different lines of pieces of evidence confirmed that the spike protein that can be found on the surface of the SARS-CoV-2 virus latches onto angiotensin-converting enzyme 2 (ACE2) receptors located on target cells.
The RNA genome of coronaviruses, which, has a median length of 29 kb and is the longest among all RNA viruses, is comprised of six to ten open reading frames (ORFs) that are responsible for encoding both the replicase and structural proteins for the virus. Each of the components of the viral genome is packaged into a helical nucleocapsid that is surrounded by a lipid bilayer. The viral envelope of coronaviruses is typically made up of three proteins that include the membrane protein (M), the envelope protein (E), and the spike protein (S). The spike protein not only facilitates the virus entry into healthy cells, which is the first step in infection but also promote profound damage to different organs and tissues leading to severe impairments and long-term disabilities.
Here, we discussed the pervasive mechanism that spikes mRNA adopted to alter multipotent and pluripotent stem cell (SCs) genomes and the acquired disability of generating an infinite number of affected clonal cells. This stance is based on the molecular and evolutionary aspects obtained from retrotransposons-retrotransposition in mammalians and humans that documented the frequent integration of mRNA molecules into genomes and thus into DNA. Retrotransposition is the molecular process in which transcribed and spliced mRNAs are accidentally reverse-transcribed and inserted into new genomic positions to form a retrogene.
Sequence-specific traits of mRNA clearly showed long interspersed element-1 (LINE-1 or L1) to confirm the retrotransposition, considered the most abundant autonomously active retrotransposons in the human genome. In mammals, L1 retrotransposons drive retrotransposition and are composed of long terminal repeats (LTRs) and non-LTR retrotransposons (mainly long interspersed nuclear elements or LINEs); specifically, the LTR-mediated retrocopies are immediately cotranscribed with their flanking LTR retrotransposons.
In response to retrotransposons transposition, stem cells (SCs) employ a number of silencing mechanisms, such as DNA methylation and histone modification. This manuscript theorizes the expression patterns, functions, and regulation of mRNA Spike protein imprinted by SCs retrotransposons which generate unlimited lines of affected cell progenies and tissues as the main condition of untreatable Spike-related inflammatory conditions.
Source: Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Dipalma, G.; Inchingolo, F.; Del Prete, R.; Hung Pham, V.; Aityan, S.K.; Nguyen, K.C.; Isacco Gargiulo, C. The Long Covid-19 Syndrome the Spike Protein and Stem Cells, the Underrated Role of Retrotransposons, a Working Hypothesis. Preprints 2023, 2023081130. https://doi.org/10.20944/preprints202308.1130.v1 https://www.preprints.org/manuscript/202308.1130/v1 (Full text available as PDF file)

Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition

Abstract:

The recent pandemic has energized research spotlighting chronic fatigue disorders. The similarities between Long COVID (LC) and Chronic Fatigue Syndrome (CFS), often accompanied by postural orthostatic tachycardia syndrome (POTS) are striking.

Furthermore, the majority afflicted with LC and CFS may be those with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, present in the majority of Americans and characterized by hypomethylation. Elevated homocysteine (Hcy) and depressed B9 and B12 may be links. Speculation about an association between these laboratory analytes and MTHFR abnormalities has been previously reported (Regland et al., 2015).

The absence of a blood-brain barrier (BBB) in CNS circumventricular organs (CVOs) that control autonomic and neuroendocrine functions, problematic in LC, CFS, POTS, and MTHFR, is provocative. Diffusion of CNS Hcy is associated with brain fog, cognitive impairment, and dementia. This provides a distinct link between MTHFR variants and the fog of LC, CFS, and POTS.

Small intestine bacterial overgrowth (SIBO), present in about 17% of Americans, is linked to POTS, mast cell activation syndrome (MCAS), and Ehlers Danlos syndrome (EDS). All exhibit histamine intolerance and female predominance. This may be due to hypomethylation and/or intestinal diamine oxidase (DAO) deficiency.

Metabolism of monoamines and histamine requires methylation. Specific CNS nuclei in CVOs may also provide insight to the POTS paradox. The similar gut microbiomes of LC/CFS (and vitamin D deficiency) may via CVOs trigger an imbalance in glutamate/GABA neurotransmission that translates to neuroendocrine and baroreflex dysfunction. Homozygosity for the MTHFR 677T allele can facilitate hypermethylation via an alternative “rescue” riboflavin pathway triggered by significant Hcy increase.

Hypermethylation predominates in Long Covid. The primary problem in these syndromes is compromised mitochondrial function due to oxidative stress induced by an antioxidant shortfall.

Victims are also frequently deficient in 25(OH)D3 (the storage form of vitamin D), magnesium, and B vitamins, consumed by the persistent chronic inflammatory state. Estrogen increases histamine, norepinephrine, and bradykinin (BKN), which may in part explain the brain fog and its predilection for females.

Source: Patrick W Chambers. Long COVID, POTS, CFS and MTHFR: Linked by Biochemistry and Nutrition. Journal of Orthomolecular Medicine. 38. https://www.researchgate.net/publication/373073968_Long_Covid_POTS_CFS_and_MTHFR_Linked_by_Biochemistry_and_Nutrition#fullTextFileContent (Full text)

MTHFR and LC, CFS, POTS, MCAS, SIBO, EDS: Methylating the Alphabet

Abstract:

Long Covid (LC), Chronic Fatigue Syndrome (CFS), Postural Orthostatic Tachycardia Syndrome (POTS), Mast Cell Activation Syndrome (MCAS), Small Intestine Bacterial Overgrowth (SIBO), and Ehlers-Danlos Syndrome (EDS) are all loosely connected, some poorly defined, some with overlapping symptoms.

The female preponderance, the prominence of fatigue and chronic inflammation, and methylenetetrahydrofolate reductase (MTHFR) abnormalities may connect them all. Indeed differential methylation may lie at the root. Two – EDS and MTHFR – are genetic. But epigenetic factors may ultimately determine their phenotypic expression.

Oxidative stress, overloaded mitochondria, an antioxidant and nutrient shortfall, and suboptimal gut microbiome appear to be the primary determinants. A deep dive into the folate and methionine cycles is undertaken in an attempt to connect these syndromes.

The active forms of vitamin D and vitamins B2,3,6,9,12 are shown to be biochemically integral to optimal methylation and control of the epigenome. Their status largely determines the symptoms of abnormal MTHFR in all its phenotypes. The wider implications for aging, cancer, cardiovascular disease, neurodegenerative disease, and autoimmune disease are briefly explored.

Source: Chambers P. MTHFR and LC, CFS, POTS, MCAS, SIBO, EDS: Methylating the Alphabet. Preprint from 30 Jun 2023. https://www.qeios.com/read/ZPYS4F (Full text)

LC, POTS, and ME/CFS: Lifting the Fog

Abstract:

These three syndromes – long covid (LC), postural orthostatic tachycardia syndrome (POTS), and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) – have many symptoms in common. The common denominator remains elusive.
The blood brain barrier (BBB) has been a barrier not only to microbes and toxins but also to understanding pathogenetic links. There are several areas within the brain that have no BBB. These are known as circumventricular organs (CVOs) and their location relative to CNS nuclei that direct autonomic and neuroendocrine functions is provocative in the quest for pathogenesis.
In addition the majority afflicted with LC and ME/CFS appear to be those with two MTHFR polymorphisms, present in over 50% of Americans. These polymorphisms elevate homocysteine. When homocysteine is combined with CVOs, the fog of POTS and its paradox are lifted. POTS may represent the intersection of LC and ME/CFS in those with the MTHFR gene (hypermethylation or 677TT).
The gut microbiomes of LC and ME/CFS, deficient in butyrates, GABA, and diversity, are then linked with MTHFR genotype 677TT. Reactivation of neurotropic EBV and VZV, due to loss of surveillance by CD4+/CD8+ T cells, is seen as secondary. The oxidative stress generated by homocysteine, loss of glutathione, low fiber diet, and persistent chronic inflammation exhaust available mitochondria and, assisted by BKN and estrogen, exacerbate all the elements of these post viral fatigue syndromes.
Source: Chambers, P. LC, POTS, and ME/CFS: Lifting the Fog. Preprints.org 2023, 2023030418. https://doi.org/10.20944/preprints202303.0418.v1 (Full text available as PDF file)

Genetic and epigenetic regulation of Catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and Fibromyalgia

Abstract:

Background: Catechol-O-methyltransferase (COMT) has been shown to influence clinical pain, descending modulation, and exercise-induced symptom worsening. COMT regulates nociceptive processing and inflammation, key pathophysiological features of Chronic Fatigue Syndrome and Fibromyalgia (CFS/FM). We aimed to determine the interactions between genetic and epigenetic mechanisms regulating COMT and its influence on inflammatory markers and symptoms in patients with CFS/FM.

Methods: A case-control study with repeated-measures design was used to reduce the chance of false positive and increase the power of our findings. Fifty-four participants (28 patients with CFS/FM and 26 controls) were assessed twice within 4 days. The assessment included clinical questionnaires, neurophysiological assessment (pain thresholds, temporal summation, and conditioned pain modulation), and blood withdrawal in order to assess rs4818, rs4633, and rs4680 COMT polymorphisms and perform haplotype estimation, DNA methylation in the COMT gene (both MB-COMT and S-COMT promoters), and cytokine expression (TNF-α, IFN-γ, IL-6, and TGF-β).

Results: COMT haplotypes were associated with DNA methylation in the S-COMT promoter, TGF-β expression, and symptoms. However, this was not specific for one condition. Significant between-group differences were found for increased DNA methylation in the MB-COMT promoter and decreased IFN-γ expression in patients.

Discussion: Our results are consistent with basic and clinical research, providing interesting insights into genetic-epigenetic regulatory mechanisms. MB-COMT DNA methylation might be an independent factor contributing to the pathophysiology of CFS/FM. Further research on DNA methylation in complex conditions such as CFS/FM is warranted. We recommend future research to employ a repeated-measure design to control for biomarkers variability and within-subject changes.

Source: Polli A, Hendrix J, Ickmans K, Bakusic J, Ghosh M, Monteyne D, Velkeniers B, Bekaert B, Nijs J, Godderis L. Genetic and epigenetic regulation of Catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and Fibromyalgia. J Transl Med. 2022 Oct 25;20(1):487. doi: 10.1186/s12967-022-03662-7. PMID: 36284330; PMCID: PMC9598022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598022/ (Full text)

Dynamic Epigenetic Changes during a Relapse and Recovery Cycle in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease with variable severity throughout the ongoing illness. Patients experience relapses where symptoms increase in severity, leaving them with a marked reduction in quality of life. Previous work has investigated molecular differences between ME/CFS patients and healthy controls, but the dynamic changes specific to each individual patient are unknown. Precision medicine can determine how each patient responds individually during variations in their long-term illness. We apply precision medicine here to map genomic changes in two selected ME/CFS patients through a relapse recovery cycle.

Results: DNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) from two patients and a healthy age/gender matched control in a longitudinal study to capture a patient relapse. Reduced representation DNA methylation sequencing profiles were obtained from each time point spanning the relapse recovery cycle. Both patients throughout the time course showed a significantly larger methylome variability (10-20 fold) compared with the control. During the relapse changes in the methylome profiles of the two patients were detected in regulatory-active regions of the genome that were associated respectively with 157 and 127 downstream genes, indicating disturbed metabolic, immune and inflammatory functions occurring during the relapse.

Conclusions: Severe health relapses in ME/CFS patients result in functionally important changes in their DNA methylomes that, while differing among patients, lead to similar compromised physiology. DNA methylation that is a signature of disease variability in ongoing ME/CFS may have practical applications for strategies to decrease relapse frequency.

Source: Amber Helliwell, Peter Stockwell, Tina Edgar, Aniruddha Chatterjee, warren Perry Tate. Dynamic Epigenetic Changes during a Relapse and Recovery Cycle in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
medRxiv 2022.02.24.22270912; doi: https://doi.org/10.1101/2022.02.24.22270912 (Full text)

COVID-19: A methyl-group assault?

Abstract:

The socio-economic implications of COVID-19 are devastating. Considerable morbidity is attributed to ‘long-COVID’ – an increasingly recognized complication of infection. Its diverse symptoms are reminiscent of vitamin B12 deficiency, a condition in which methylation status is compromised. We suggest why SARS-CoV-2 infection likely leads to increased methyl-group requirements and other disturbances of one-carbon metabolism. We propose these might explain the varied symptoms of long-COVID. Our suggested mechanism might also apply to similar conditions such as myalgic encephalomyelitis/chronic fatigue syndrome. The hypothesis is evaluable by detailed determination of vitamin B12 and folate status, including serum formate as well as homocysteine and methylmalonic acid, and correlation with viral and host RNA methylation and symptomatology. If confirmed, methyl-group support should prove beneficial in such individuals.

Source: McCaddon A, Regland B. COVID-19: A methyl-group assault? Med Hypotheses. 2021 Feb 18;149:110543. doi: 10.1016/j.mehy.2021.110543. Epub ahead of print. PMID: 33657459; PMCID: PMC7890339. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890339/ (Full text)