Digital health app data reveals an effect of ovarian hormones on long COVID and myalgic encephalomyelitis symptoms

Abstract:

Background. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) disproportionately affect females, suggesting modulation by sex hormones. We sought to investigate whether symptom severity is influenced by changes in sex hormones over the menstrual cycle, or by hormonal contraception.

Methods: We carried out a retrospective analysis of menstrual and symptom data, prospectively collected via the Visible app from individuals with long COVID, ME/CFS, or both, who had regular menstrual cycles, between 7 September 2022 and 6 March 2024. Mixed-effects models were used to examine associations between symptom severity, menstrual cycle phase and contraception type.

Findings: 948 users were included; 100% of users were female and 92.6% identified as women. The most tracked symptoms were fatigue (99.5% of users), brain fog (88.3%), headaches (85.1%) and muscle aches (78.6%). All menstrual cycle phases showed a modest, but significant, improvement compare to the menstrual phase, most markedly in the early luteal (IRR 0.963%, 95% CI: 0.958 – 0.968), but also the follicular (IRR = 0.985, 95% CI: 0.981 – 0.990) and late luteal phase (IRR = 0.980, 95% CI: 0.974-0.985). Crashes (sudden and severe worsening of symptoms following exertion) were significantly more frequent during menstruation than in other phases. Users of combined hormonal contraception (n=70) had a statistically significant reduction in overall symptom score (OR = 0.827, 95% CI: 0.690 – 0.992) and crash incidence (OR = 0.548, 95% CI: 0.350 – 0.856) compared to those not using hormonal contraception (=786).

Interpretation: Menstruation is associated with worsened symptoms in long COVID and ME/CFS. Users of combined hormonal contraception report a lower symptom burden than non-users, suggesting a modulatory role of ovarian hormones. These findings could empower menstruating people living with long COVID and ME/CFS to anticipate cyclical changes in symptoms and plan their activities accordingly, and could also inform their use of contraception.

Source: Abigail Goodship, Rory Preston, Joseph T Hicks, Harry Leeming, Christian Morgenstern, Victoria Male. Digital health app data reveals an effect of ovarian hormones on long COVID and myalgic encephalomyelitis symptoms. medRxiv 2025.01.24.25321092; doi: https://doi.org/10.1101/2025.01.24.25321092 https://www.medrxiv.org/content/10.1101/2025.01.24.25321092v1 (Full text available as PDF file)

Distinct pro-inflammatory/pro-angiogenetic signatures distinguish children with Long COVID from controls

Abstract:

Background: Recent proteomic studies have documented that Long COVID in adults is characterized by a pro-inflammatory signature with thromboinflammation. However, if similar events happen also in children with Long COVID has never been investigated.

Methods: We performed an extensive protein analysis of blood plasma from pediatric patients younger than 19 years of age Long COVID and a control group of children with acute COVID-19, MIS-C, and healthy controls resulted similar for sex distribution and age. Children were classified as Long COVID if symptoms persisted for at least 8 weeks since the initial infection, negatively impacted daily life and could not be explained otherwise.

Results: 112 children were included in the study, including 34 children fulfilling clinical criteria of Long COVID, 32 acute SARS-CoV-2 infection, 27 MIS-C and 19 healthy controls. Compared with controls, pediatric Long COVID was characterized by higher expression of the proinflammatory and pro-angiogenetic set of chemokines CXCL11, CXCL1, CXCL5, CXCL6, CXCL8, TNFSF11, OSM, STAMBP1a. A Machine Learning model based on proteomic profile was able to identify LC with an accuracy of 0.93, specificity of 0.86 and sensitivity of 0.97.

Conclusions: Pediatric Long COVID patients have a well distinct blood protein signature marked by increased ongoing general and endothelial inflammation, similarly as happens in adults.

Impact:

  • Pediatric Long COVID has a distinct blood protein signature marked by increased ongoing general and endothelial inflammation.
  • This is the first study studying and documenting proinflammatory profile in blood samples of children with long COVID.
  • Long COVID was characterized by higher expression of the proinflammatory and pro-angiogenetic set of chemokines CXCL11, CXCL1, CXCL5, CXCL6, CXCL8, TNFSF11, OSM, STAMBP1a.
  • A proteomic profile was able to identify Long COVID with an accuracy of 0.93, specificity of 0.86 and sensitivity of 0.97.
  • These findings may inform development of future diagnostic tests.

Source: Buonsenso, D., Cotugno, N., Amodio, D. et al. Distinct pro-inflammatory/pro-angiogenetic signatures distinguish children with Long COVID from controls. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-03837-0  https://www.nature.com/articles/s41390-025-03837-0

Autoantibody-Driven Monocyte Dysfunction in Post-COVID Syndrome with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Post-COVID syndrome (PCS) has emerged as a significant health concern with persisting symptoms. A subset of PCS patients develops severe myalgic encephalomyelitis/chronic fatigue syndrome (pcME/CFS). Dysregulated autoantibodies (AABs) have been implicated in PCS, contributing to immune dysregulation, impairment of autonomous nerve and vascular function. As recently shown in autoimmune diseases, IgG fractions translate disease-specific pathways into various cells. Therefore, we asked whether IgG fractions from PCS patients could be applied in vitro to identify specific cytokine rersponses for PCS patients without (nPCS) and with pcME/CSF.

To assess this, we have stimulated monocyte cell lines with IgG fractions from PCS patients. Our findings reveal distinct patterns of immune regulation by AABs in vascular and immune dysfunction. In contrast to nPCS, pcME/CSF AABs induced enhanced neurotrophic responses, characterized by significant cytokine correlations involving brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF) and LIGHT. AAB-induced cytokine levels correlate with clinical symptoms. Further, this study emphasizes a contribution of AAB in PCS, in mitigating long-term immune dysregulation, and a need for therapies modulating IgG-induced pathways.

Source: Alexander HackelFranziska SotznyElise MennengaHarald HeideckeKai Schulze-FosterKontantinos FourlakisSusanne LuedersHanna GrasshoffKerstin RubarthFrank KonietschkeTanja LangeCarmen ScheibenbogenReza Akbarzade, Gabriela Riemekasten. Autoantibody-Driven Monocyte Dysfunction in Post-COVID Syndrome with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS

Abstract:

Autoreactive antibodies (AAB) are currently being investigated as causative or aggravating factors during post-COVID. In this study we analyze the effect of immunoadsorption therapy on symptom improvement and the relationship with immunological parameters in post-COVID patients exhibiting symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) induced or aggravated by an SARS-CoV-2 infection. This observational study includes 12 post-COVID patients exhibiting a predominance of ME/CFS symptoms alongside increased concentrations of autonomic nervous system receptors (ANSR) autoantibodies and neurological impairments.

We found that following immunoadsorption therapy, the ANSR autoantibodies were nearly eliminated from the patients’ blood. The removal of IgG antibodies was accompanied by a decrease of pro-inflammatory cytokines including IL4, IL2, IL1β, TNF and IL17A serum levels, and a significant reduction of soluble spike protein. Notably, a strong positive correlation between pro-inflammatory cytokines and ASNR-AABs β1, β2, M3, and M4 was observed in spike protein-positive patients, whereas no such correlation was evident in spike protein-negative patients.

30 days post-immunoadsorption therapy, patients exhibited notable improvement in neuropsychological function and a modest but statistically significant amelioration of hand grip strength was observed. However, neither self-reported symptoms nor scores on ME/CFS questionnaires showed a significant improvement and a rebound of the removed proteins occurring within a month.

Source: Anft M, Wiemers L, Rosiewicz KS, Doevelaar A, Skrzypczyk S, Kurek J, Kaliszczyk S, Seidel M, Stervbo U, Seibert FS, Westhoff TH, Babel N. Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS. Mol Ther. 2025 Jan 9:S1525-0016(25)00011-5. doi: 10.1016/j.ymthe.2025.01.007. Epub ahead of print. PMID: 39797400. https://www.cell.com/molecular-therapy-family/molecular-therapy/pdf/S1525-0016(25)00011-5.pdf (Full text) https://pubmed.ncbi.nlm.nih.gov/39797400/ (Abstract)

Incidence and Prevalence of Post-COVID-19 Myalgic Encephalomyelitis: A Report from the Observational RECOVER-Adult Study

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may occur after infection. How often people develop ME/CFS after SARS-CoV-2 infection is unknown.

Objective: To determine the incidence and prevalence of post-COVID-19 ME/CFS among adults enrolled in the Researching COVID to Enhance Recovery (RECOVER-Adult) study.

Design, setting, and participants: RECOVER-Adult is a longitudinal observational cohort study conducted across the U.S. We included participants who had a study visit at least 6 months after infection and had no pre-existing ME/CFS, grouped as (1) acute infected, enrolled within 30 days of infection or enrolled as uninfected who became infected (n=4515); (2) post-acute infected, enrolled greater than 30 days after infection (n=7270); and (3) uninfected (1439).

Measurements: Incidence rate and prevalence of post-COVID-19 ME/CFS based on the 2015 Institute of Medicine ME/CFS clinical diagnostic criteria.

Results: The incidence rate of ME/CFS in participants followed from time of SARS-CoV-2 infection was 2.66 (95% CI 2.63-2.70) per 100 person-years while the rate in matched uninfected participants was 0.93 (95% CI 0.91-10.95) per 100 person-years: a hazard ratio of 4.93 (95% CI 3.62-6.71). The proportion of all RECOVER-Adult participants that met criteria for ME/CFS following SARS-CoV-2 infection was 4.5% (531 of 11,785) compared to 0.6% (9 of 1439) in uninfected participants. Post-exertional malaise was the most common ME/CFS symptom in infected participants (24.0%, 2830 of 11,785). Most participants with post-COVID-19 ME/CFS also met RECOVER criteria for long COVID (88.7%, 471 of 531).

Limitations: The ME/CFS clinical diagnostic criteria uses self-reported symptoms. Symptoms can wax and wane.

Conclusion: ME/CFS is a diagnosable sequela that develops at an increased rate following SARS-CoV-2 infection. RECOVER provides an unprecedented opportunity to study post-COVID-19 ME/CFS.

Source: Vernon SD, Zheng T, Do H, Marconi VC, Jason LA, Singer NG, Natelson BH, Sherif ZA, Bonilla HF, Taylor E, Mullington JM, Ashktorab H, Laiyemo AO, Brim H, Patterson TF, Akintonwa TT, Sekar A, Peluso MJ, Maniar N, Bateman L, Horwitz LI, Hess R; NIH Researching COVID to Enhance Recovery (RECOVER) Consortium. Incidence and Prevalence of Post-COVID-19 Myalgic Encephalomyelitis: A Report from the Observational RECOVER-Adult Study. J Gen Intern Med. 2025 Jan 13. doi: 10.1007/s11606-024-09290-9. Epub ahead of print. PMID: 39804551. https://link.springer.com/article/10.1007/s11606-024-09290-9 (Full text)

Cluster analysis to identify long COVID phenotypes using 129Xe magnetic resonance imaging: a multicentre evaluation

Abstract:

Background: Long COVID impacts ∼10% of people diagnosed with coronavirus disease 2019 (COVID-19), yet the pathophysiology driving ongoing symptoms is poorly understood. We hypothesised that 129Xe magnetic resonance imaging (MRI) could identify unique pulmonary phenotypic subgroups of long COVID. Therefore, we evaluated ventilation and gas exchange measurements with cluster analysis to generate imaging-based phenotypes.

Methods: COVID-negative controls and participants who previously tested positive for COVID-19 underwent 129Xe MRI ∼14 months post-acute infection across three centres. Long COVID was defined as persistent dyspnoea, chest tightness, cough, fatigue, nausea and/or loss of taste/smell at MRI; participants reporting no symptoms were considered fully recovered. 129Xe MRI ventilation defect percent (VDP) and membrane-to-gas (Mem/Gas), red blood cell-to-membrane (RBC/Mem) and red blood cell-to-gas (RBC/Gas) ratios were used in k-means clustering for long COVID, and measurements were compared using ANOVA with post-hoc Bonferroni correction.

Results: We evaluated 135 participants across three centres: 28 COVID-negative (mean±sd age 40±16 years), 34 fully recovered (42±14 years) and 73 long COVID (49±13 years). RBC/Mem (p=0.03) and forced expiratory volume in 1 s (FEV1) (p=0.04) were different between long COVID and COVID-negative; FEV1 and all other pulmonary function tests (PFTs) were within normal ranges. Four unique long COVID clusters were identified compared with recovered and COVID-negative. Cluster 1 was the youngest with normal MRI and mild gas trapping; Cluster 2 was the oldest, characterised by reduced RBC/Mem but normal PFTs; Cluster 3 had mildly increased Mem/Gas with normal PFTs; and Cluster 4 had markedly increased Mem/Gas with concomitant reduction in RBC/Mem and restrictive PFT pattern.

Conclusions: We identified four 129Xe MRI long COVID phenotypes with distinct characteristics. 129Xe MRI can dissect pathophysiological heterogeneity of long COVID to enable personalised patient care.

Source: Eddy RL, Mummy D, Zhang S, Dai H, Bechtel A, Schmidt A, Frizzell B, Gerayeli FV, Leipsic JA, Leung JM, Driehuys B, Que LG, Castro M, Sin DD, Niedbalski PJ. Cluster analysis to identify long COVID phenotypes using 129Xe magnetic resonance imaging: a multicentre evaluation. Eur Respir J. 2024 Mar 28;63(3):2302301. doi: 10.1183/13993003.02301-2023. PMID: 38331459; PMCID: PMC10973687. https://pmc.ncbi.nlm.nih.gov/articles/PMC10973687/ (Full text)

Efficacy of repeated immunoadsorption in patients with post-COVID myalgic encephalomyelitis/chronic fatigue syndrome and elevated β2-adrenergic receptor autoantibodies: a prospective cohort study

Abstract:

Background: Since the pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the leading trigger for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Evidence indicates that autoimmunity plays an important pathophysiological role. We aimed to evaluate the effectiveness of IA treatment in post-COVID ME/CFS patients.

Methods: This pre-post study included 20 post-coronavirus disease 2019 (COVID) ME/CFS patients found to have elevated β2 adrenergic autoantibodies (β2 AR-AB) between October 2022 and October 2023. Patients, with a median disease duration of 22 months (IQR: 15-31), were treated with five immunoadsorption sessions at Charité – Universitätsmedizin Berlin, Germany. Seven were male and 13 female, with a median age of 40 years (IQR: 36-51). The primary end point was the change in the Short Form (36) Health Survey physical functioning domain (SF36 PF) from baseline to four weeks post immunoadsorption. Key symptoms were assessed via questionnaires over six months. Handgrip strength and EndoPAT® measurements were used to evaluate muscle fatigue and vascular dysfunction. Seven patients who worsened after an initial response received a second cycle.

Findings: The treatment was generally well tolerated, reducing total immunoglobulin G by 79% (CI: 73-84%) and β2 AR-AB by 77% (CI: 58-95%). Patients demonstrated a mean increase in the SF36 PF of 17.75 points (CI: 13.41-26.16), with the greatest improvement occurring between months two and three, and significant gains maintained through month six. 14/20 (70%) patients were categorized as responders with an increase in the SF36 PF of ≥ ten points. Further lasting improvements were reported in fatigue, post-exertional malaise, pain, cognitive, autonomic, and immunological symptoms. Female patients had increased repeat handgrip strength at month six.

Interpretation: Immunoadsorption may improve symptoms in post-COVID ME/CFS patients. The beneficial effects of IgG depletion suggest a significant role for autoantibodies and disturbed B-cell function in the condition’s pathophysiology.

Funding: Funded by The Federal Ministry of Education and Research and the Weidenhammer Zöbele Research Foundation.

Source: Stein E, Heindrich C, Wittke K, Kedor C, Rust R, Freitag H, Sotzny F, Krüger A, Tölle M, Grabowski P, Scheibenbogen C, Kim L. Efficacy of repeated immunoadsorption in patients with post-COVID myalgic encephalomyelitis/chronic fatigue syndrome and elevated β2-adrenergic receptor autoantibodies: a prospective cohort study. Lancet Reg Health Eur. 2024 Dec 12;49:101161. doi: 10.1016/j.lanepe.2024.101161. PMID: 39759581; PMCID: PMC11699797. https://pmc.ncbi.nlm.nih.gov/articles/PMC11699797/ (Full text)

Key Pathophysiological Role of Skeletal Muscle Disturbance in Post COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Accumulated Evidence

Abstract:

Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.

Methods: We collect, summarize and discuss the current state of knowledge for the key role of skeletal muscle pathophysiology. We try to explain which risk factors and mechanisms are responsible for a subgroup of patients with post COVID syndrome (PCS) to develop ME/CFS (PC-ME/CFS).

Results: Mitochondrial dysfunction is a long-held assumption to explain cardinal symptoms of ME/CFS. However, mitochondrial dysfunction could not be convincingly shown in leukocytes. By contrast, recent studies provide strong evidence for mitochondrial dysfunction in skeletal muscle tissue in ME/CFS. An electron microscopy study could directly show damage of mitochondria in skeletal muscle of ME/CFS patients with a preferential subsarcolemmal localization but not in PCS. Another study shows signs of skeletal muscle damage and regeneration in biopsies taken one day after exercise in PC-ME/CFS. The simultaneous presence of necroses and signs of regeneration supports the concept of repeated damage. Other studies correlated diminished hand grip strength (HGS) with symptom severity and prognosis. A MRI study showed that intracellular sodium in muscles of ME/CFS patients is elevated and that levels correlate inversely with HGS. This finding corroborates our concept of sodium and consecutive calcium overload as cause of muscular and mitochondrial damage caused by enhanced proton-sodium exchange due to anaerobic metabolism and diminished activity of the sodium-potassium-ATPase. The histological investigations in ME/CFS exclude ischemia by microvascular obstruction, viral presence or immune myositis. The only known exercise-induced mechanism of damage left is sodium induced calcium overload. If ionic disturbance and mitochondrial dysfunction is severe enough the patient may be captured in a vicious circle. This energy deficit is the most likely cause of exertional intolerance and post exertional malaise and is further aggravated by exertion.

Conclusion: Based on this pathomechanism, future treatment approaches should focus on normalizing the cause of ionic disbalance. Current treatment strategies targeting hypoperfusion have the potential to improve the dysfunction of ion transporters.

Source: Scheibenbogen C, Wirth KJ. Key Pathophysiological Role of Skeletal Muscle Disturbance in Post COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Accumulated Evidence. J Cachexia Sarcopenia Muscle. 2025 Feb;16(1):e13669. doi: 10.1002/jcsm.13669. PMID: 39727052; PMCID: PMC11671797. https://pmc.ncbi.nlm.nih.gov/articles/PMC11671797/ (Full text)

More than “Brain Fog”: Cognitive Dysfunction and the Role of Occupational Therapy in Long COVID

Abstract:

Long COVID is a disabling condition which affects occupational performance and quality of life. It interferes with activities of daily living, work, and many meaningful life roles. Cognitive dysfunction is a frequently reported symptom, yet it is commonly overlooked. It is important that cognitive activity is considered when working with people with long COVID, particularly when identifying triggers of post exertional symptom exacerbation. There are many potential mechanisms that could be driving cognitive dysfunction in long COVID including neuroinflammation, viral persistence, vascular damage, and orthostatic intolerance. It is important to consider these to help guide intervention.

The purpose of this clinical perspective is to highlight the debilitating impact of cognitive dysfunction in those with long COVID and share the key role of occupational therapists in this area. Cognitive dysfunction may be missed on standardized assessments as they may not be sensitive enough due to the episodic nature of symptoms. Occupational therapists can play a key role in this area as they are experts in assessing occupational performance and in providing safe cognitive assessment and rehabilitation.

Source: Skiffington, Helen OT, BSc Hons1,2; Breen, Ciara MSc, HCM3,4,5. More than “Brain Fog”: Cognitive Dysfunction and the Role of Occupational Therapy in Long COVID. Cardiopulmonary Physical Therapy Journal 36(1):p 39-49, January 2025. | DOI: 10.1097/CPT.0000000000000274 https://journals.lww.com/cptj/fulltext/2025/01000/more_than__brain_fog___cognitive_dysfunction_and.7.aspx (Full text)

A Single-Center Pilot Study of Therapeutic Apheresis in Patients with Severe Post-COVID Syndrome

Abstract:

After the COVID-19 pandemic, many patients have reported chronic fatigue and severe post-exertional malaise, with symptoms similar to those of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The accumulation of agonistic receptor autoantibodies targeting beta-adrenergic (β1 and β2) and muscarinic (M3 and M4) neurotransmitter receptors may play a crucial role in the pathomechanism of both ME/CFS and post-COVID conditions.

Therapeutic apheresis has been suggested as an effective treatment option for alleviating and mitigating symptoms in this desperate group of patients. In this single-center pilot study, we analyzed autoantibodies in a cohort of 20 post-COVID patients before and after therapeutic apheresis. Apheresis resulted in a decline of β1 or β2 adrenergic receptor antibodies in all patients. Additionally, the majority of patients experienced a concurrent reduction in symptoms such as fatigue, physical activity restrictions, myalgia, post-exertional malaise, and concentration disorders.

This study clearly demonstrates an association between autoantibodies and the clinical improvement of post-COVID patients. Even if future sham-controlled trials do not show a positive outcome, extracorporeal apheresis may still be valuable for this patient group by temporarily improving microperfusion and symptoms. Success in restoring patients to work and normal life, as observed in many individuals after therapeutic apheresis, should be recognized. Therefore, we believe that extracorporeal therapeutic apheresis, as part of a multimodal treatment, should be considered an early intervention for postinfectious syndromes in selected patients.

Source: Korth J, Steenblock C, Walther R, Barbir M, Husung M, Velthof A. A Single-Center Pilot Study of Therapeutic Apheresis in Patients with Severe Post-COVID Syndrome. Horm Metab Res. 2024 Dec;56(12):869-874. doi: 10.1055/a-2445-8593. Epub 2024 Dec 9. PMID: 39653042. https://pubmed.ncbi.nlm.nih.gov/39653042/