The Potential Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Post-COVID-19 Condition: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog

Abstract:

Post-COVID-19 condition (commonly known as Long COVID) is a heterogeneous clinical condition in which Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and brain fog stand out among the different clinical symptoms and syndromes. Cerebral metabolic alterations and neuroendocrine disorders seem to constitute an important part of the pathophysiology of Post-COVID-19 condition (PCC).

Given the substantial lack of specific drugs and effective therapeutic strategies, hypothalamic phospholipid liposomes, which have been on the market for several years as adjuvant therapy for cerebral metabolic alterations resulting from neuroendocrine disorders, might represent a potential option in an overall therapeutic strategy that aims to control PCC-associated symptoms and syndromes. Their pharmacological mechanisms and clinical effects strongly support their potential effectiveness in PCC. Our initial clinical experience seems to corroborate this rationale. Further controlled clinical research is warranted in order to verify this hypothesis.

Source: Menichetti F. The Potential Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Post-COVID-19 Condition: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog. J Clin Med. 2023 Aug 23;12(17):5478. doi: 10.3390/jcm12175478. PMID: 37685544; PMCID: PMC10488182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488182/ (Full text)

Long and Short-term Metformin Consumption as a Potential Therapy to Prevent Complications of COVID-19

Abstract:

Purpose: The aim of the study is to evaluate the effect of metformin in complication improvement of hospitalized patients with COVID-19.

Methods: This was a randomized clinical trial that involved 189 patients with confirmed COVID-19 infection. Patients in the intervention group received metformin-500 mg twice daily. Patients who received metformin before admission were excluded from the control group. Patients who were discharged before taking at least 2000 mg of metformin were excluded from the study. Primary outcomes were vital signs, need for ICU admission, need for intubation, and mortality.

Results: Data showed that patients with diabetes with previous metformin in their regimen had lower percentages of ICU admission and death in comparison with patients without diabetes (11.3% vs. 26.1% (P=0.014) and 4.9% vs. 23.9% (P≤0.001), respectively). Admission time characteristics were the same for both groups except for diabetes and hyperlipidemia, which were significantly different between the two groups. Observations of naproxen consumption on endpoints, duration of hospitalization, and the levels of spO2 did not show any significant differences between the intervention and the control group. The adjusted OR for intubation in the intervention group versus the control group was 0.21 [95% CI, 0.04-0.99 (P=0.047)].

Conclusion: In this trial, metformin consumption had no effect on mortality and ICU admission rates in non-diabetic patients. However, metformin improved COVID-19 complications in diabetic patients who had been receiving metformin prior to COVID-19 infection, and it significantly lowered the intubation rates.

Source: Shaseb E, Ghaffary S, Garjani A, Zoghi E, Maleki Dizaji N, Soltani S, Sarbakhsh P, Somi MH, Valizadeh P, Taghizadieh A, Faghihdinevari M, Varshochi M, Naghily B, Bayatmakoo Z, Saleh P, Taghizadeh S, Haghdoost M, Owaysi H, Ravanbakhsh Ghavghani F, Tarzamni MK, Moradi R, Javan Ali Azar F, Shabestari Khiabani S, Ghazanchaei A, Hamedani S, Hatefi S. Long and Short-term Metformin Consumption as a Potential Therapy to Prevent Complications of COVID-19. Adv Pharm Bull. 2023 Jul;13(3):621-626. doi: 10.34172/apb.2023.066. Epub 2022 Jul 2. PMID: 37646067; PMCID: PMC10460805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460805/ (Full text)

Treatment of Brain Fog of Long COVID Syndrome: A Hypothesis

Abstract:

The emergence of the SARS-CoV-2 (COVID-19) virus has exacted a significant toll on the global population in terms of fatalities, health consequences, and economics. As of February 2023, there have been almost 800 million confirmed cases of the disorder reported to the WHO [1], although the actual case-positive rate is estimated to be much higher.

While many cases recover, the mortality rate associated with the illness is about 1% (based on the WHO data). Most patients experience the illness as a mild to moderate disorder and recover without significant sequelae. However, as the COVID-19 pandemic has continued, there has emerged a significant group of COVID-19 survivors who experience persistent symptoms beyond the acute course of the illness.

As many as one in eight patients report persistent symptoms 90 to 150 days after the initial infection [2]. These so-called Long COVID or post-COVID syndrome patients are mostly drawn from those who were hospitalised for the disorder, but both non-hospitalised and vaccinated subjects may also experience the syndrome [3]. While an agreed definition of Long COVID is yet to be settled, a multiplicity of symptoms affecting most major organ systems has been reported in patients.

Common Long COVID symptoms include fatigue, dyspnoea, headaches, myalgia, anosmia, dysgeusia, cognitive symptoms, and mental disorders such as depression and anxiety [4]. It is estimated that approximately a third of patients with Long COVID exhibit either fatigue, cognitive impairment, or both up to 12 weeks after a confirmed diagnosis of COVID-19 [5].

Source: Norman TR. Treatment of Brain Fog of Long COVID Syndrome: A Hypothesis. Psychiatry International. 2023; 4(3):242-245. https://doi.org/10.3390/psychiatryint4030024 https://www.mdpi.com/2673-5318/4/3/24 (Full text)

Long Covid & Antidepressants

Abstract:

Three years into this historic pandemic, the scientific and healthcare communities continue to learn agreat deal regarding COVID-19, the disease that is produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most urgent and immediate focus has been on vaccine development for diseaseprevention/mitigation and on identification of effective therapeutic interventions for acute phase of illness. However, attention is increasingly being placed on formulating treatment strategies for individuals who arepost-COVID-19 and experiencing a syndrome of persistent cognitive, somatic and behavioral symptoms that is being referred to as long COVID.

In addition to identifying novel compounds that may improve outcome ineither acute or residual COVID-19, an alternate and parallel strategy is to repurpose or reposition drugs which have been approved for other conditions and subsequently assess their safety and efficacy when applied toCOVID-19. In this light, antidepressant medications, particularly serotonin reuptake inhibitors, have garnered attention amidst evidence supporting their anti-inflammatory and anti-viral properties. Results from several preliminary studies suggest that early administration of antidepressants may prevent clinical deterioration and even death in patients with acute COVID-19.

In this article, we present purported anti-inflammatory mechanisms of the antidepressants, review results from studies that have appeared in the literature to date regarding antidepressants and acute COVID-19, and discuss the possible utility of antidepressants as a potential therapeutic resource for long COVID.

Source: Rivas-Vázquez R, Carrazana EJ, Blais MA, Rey GJ, Rivas-Vázquez E. Long Covid & Antidepressants. Med Discoveries. 2023; 2(3): 1023.  https://meddiscoveries.org/pdf/1023.pdf (Full text)

L-Arginine in Restoring ‘Immune Dysregulation’ in Long COVID: It’s the Therapeutic Role Beyond the Routine Dietary Supplement!

Abstract:

COVID-19 pandemic is over now and we are in great peace of relief after three years. This pandemic has observed significant impact on quality of life globally and the put unforgettable imprints on history of mankind. Reason for more havoc in this pandemic was less studied virus by medical scientists regarding its pathophysiology, available treatment options and lack of effective vaccine to tackle this dragon. COVID-19 is the first observed and reported pandemic of corona virus related global disease apart from its previous SARS and MERS. Fast track developments in medical treatment options due to this ultrafast digital and artificial intelligence techniques have curtailed mortality on large scale globally.
Although mortality is significantly reduced, morbidity is documented on a large scale worldwide in this pandemic. Morbidity due to COVID-19 now called as ‘Long COVID’, which is underreported & half-heartedly evaluated globally. Long COVID is related to persistent immune dysregulation occurs during evolution of COVID-19 as natural trend of disease.
Immune dysregulation has documented during course of active viremia, during recovery of viral illness and after post viral phase. Immune dysregulation occurs in ‘selected group’ of cases irrespective of disease severity and vaccination status and observed in cases with negligible illness to advanced one mandates further research. Thus, Immune dysregulation in COVID-19 is predominant cause for long covid and leading to brainstorming effect on medical scientists and researchers as of today.
Globally, one third of recovered or affected cases of COVID-19 are facing long covid and needs prompt treatment options to tackle this dragon related long term effect on body. ‘Immunomodulatory’ or immunity modifying agents are the primary targets to curtail immune dysregulation and long covid. Some experts recommend ‘disease modifying agents’ to treat long covid cases. Still, many miles to go to reach to effective treatment options for long covid and we don’t have effective options for this ‘health issue of global concern’.
L-Arginine is amino acid with multiple beneficial effects such as immunomodulatory effects which will regulates immunological response in inhibit dysregulated immune system additional to its universally known antioxidant, vasodilatory and regenerative and cellular proliferation effects on immune cells. These Immunomodulatory and or diseases modifying effects of L-Arginine makes it the future candidate with ‘game changer’ role for management of Long covid resulting from immune dysregulation as a core pathophysiologic pathway of this Dragon Pandemic.
Source: Patil, Dr Shital, Patil, Swati, Gondhali, Gajanan. L-Arginine in Restoring ‘Immune Dysregulation’ in Long COVID: It’s the Therapeutic Role Beyond the Routine Dietary Supplement!  South Asian Journal of Life Sciences, 5(4):60-74. https://www.researchgate.net/publication/373217918_L-Arginine_in_Restoring_%27Immune_Dysregulation%27_in_Long_COVID_It%27s_the_Therapeutic_Role_Beyond_the_Routine_Dietary_Supplement (Full text)

Compounding for the Treatment of COVID-19 and Long COVID, Part 4: The Legacy of Chronic COVID

Abstract:

People infected by severe acute respiratory coronavirus 2 (SARS-CoV-2) risk the development of not only acute coronavirus- disease-2019 (COVID-19) – the signs and symptoms of which range from none to severe illness that requires intensive treatment – but also long COVID (i.e., chronic COVID), a cyclical, progressive, multiphasic illness characterized by myriad debilitating conditions that persist long term. In some patients, those sequelae result in psychiatric disorders that can lead to suicide or other forms of self-harm, incidences of which have increased exponentially since before the COVID pandemic. It has been suggested that long COVID develops in an estimated 10% to 35% of people diagnosed as having COVID-19.

Because the success of therapy for either form of COVID can be complicated by each patient’s pharmacogenomic profile, personal treatment preferences, medical needs, and/or dosing requirements, we have found that in some people so afflicted, manufactured medications are ineffective or intolerable, and that for those individuals, a customized compound often provides relief and promotes recovery. The primary focus of this article is long COVID. The pathogenesis of that disease is reviewed, therapies for the signs and symptoms it engenders are examined, and 2 compounded formulations effective in treating both acute and chronic COVID-19 are presented.

Source: Riepl M, Kaiser J. Compounding for the Treatment of COVID-19 and Long COVID, Part 4: The Legacy of Chronic COVID. Int J Pharm Compd. 2023 Jul-Aug;27(4):284-293. PMID: 37595172. https://pubmed.ncbi.nlm.nih.gov/37595172/

Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides

Abstract:

The COVID-19 pandemic has caused significant global impact, resulting in long-term health effects for many individuals. As more patients recover, there is a growing need to identify effective management strategies for ongoing health concerns, such as post-COVID-19 syndrome, characterized by persistent symptoms or complications beyond several weeks or months from the onset of symptoms. In this review, we explore the potential of dietary polysaccharides as a promising approach to managing post-COVID-19 syndrome.

We summarize the immunomodulatory, antioxidant, antiviral, and prebiotic activities of dietary polysaccharides for the management of post-COVID-19 syndrome. Furthermore, the review investigates the role of polysaccharides in enhancing immune response, regulating immune function, improving oxidative stress, inhibiting virus binding to ACE2, balancing gut microbiota, and increasing functional metabolites. These properties of dietary polysaccharides may help alleviate COVID-19 symptoms, providing a promising avenue for effective treatment strategies.

Source: Cheong KL, Yu B, Teng B, Veeraperumal S, Xu B, Zhong S, Tan K. Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides. Biomed Pharmacother. 2023 Aug 16;166:115320. doi: 10.1016/j.biopha.2023.115320. Epub ahead of print. PMID: 37595427. https://www.sciencedirect.com/science/article/pii/S0753332223011113 (Full text)

Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Plasmalogens (Pls) are lipids containing a vinyl-ether bond in their glycerol backbone.
  • Pls have antioxidant properties and are important for curved membrane assemblies.
  • Post-COVID-19 symptoms are highly prevalent and share several features with ME/CFS.
  • Pls depletion is a shared biological hallmark of ME/CFS and acute COVID-19 syndrome.
  • Pls replacement is a promising tool against neuroinflammation in these two conditions.

Abstract:

After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties (“brain fog”), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions.

Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms.

Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.

Source: Adriano Maia Chaves-Filho, Olivia Braniff, Angelina Angelova, Yuru Deng, Marie-Ève Tremblay. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Research Bulletin, Volume 201, September 2023, 110702. https://www.sciencedirect.com/science/article/pii/S0361923023001272 (Full text)

Ivabradine effects on COVID-19-associated postural orthostatic tachycardia syndrome: a single center prospective study

Abstract:

Background: A wide range of cardiac arrhythmias were reported in the setting of active infection or as a complication of COVID-19. The main pathophysiology can be attributed to dysautonomia or autonomic nervous system dysfunction. Postural orthostatic tachycardia syndrome (POTS) is a complex, multisystemic disorder affecting usually younger age with tachycardia at rest or with minimal effort being the main symptom. Data regarding the safety and efficacy of ivabradine in POTS treatment is limited to small studies and case reports.

Methods: This prospective observational study included a total of 55 COVID-19-associated POTS patients after the exclusion of other causes of tachycardia. Ivabradine 5 mg twice daily was initiated. Re-assessment of patients’ symptoms, heart rate, and heart rate variability (HRV) parameters’ changes after 3 days of ivabradine therapy was done.

Results: The mean age of the included patients was 30.5±6.9 years with 32 patients being males (58.2%). 43 of 55 (78%) of the included patients reported significant improvement of the symptoms within 7 days of ivabradine therapy. 24-hour heart rate (minimum, average, and maximum) was significantly lower (p-value < 0.0001*, = 0.001*, < 0.0001* consecutively) with a significant difference in HRV time-domain parameters (SDNN, rMSSD) (p-value < 0.0001*) after ivabradine therapy.

Conclusion: In a prospective study that evaluated the effects of ivabradine in post-COVID-19 POTS, patients treated with ivabradine reported improvement of their symptoms within 7 days of ivabradine treatment with a significant reduction of 24-hour average, minimum, and maximum heart rate, and improvement of HRV time domains parameters. Ivabradine might be a useful option to relieve symptoms of tachycardia in COVID-19 POTS. Further research is required to confirm the safety and efficacy of ivabradine in POTS treatment.

Source: Abdelnabi M, Saleh Y, Ahmed A, Benjanuwattra J, Leelaviwat N, Almaghraby A. Ivabradine effects on COVID-19-associated postural orthostatic tachycardia syndrome: a single center prospective study. Am J Cardiovasc Dis. 2023 Jun 25;13(3):162-167. PMID: 37469536; PMCID: PMC10352820. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352820/ (Full text)

Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection

Abstract:

Background: Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology.

Methods: Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients.

Findings: IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist.

Interpretation: SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology.

Source: Guo L, Appelman B, Mooij-Kalverda K, Houtkooper RH, van Weeghel M, Vaz FM, Dijkhuis A, Dekker T, Smids BS, Duitman JW, Bugiani M, Brinkman P, Sikkens JJ, Lavell HAA, Wüst RCI, van Vugt M, Lutter R; Amsterdam UMC COVID-19 Biobank study Group. Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection. EBioMedicine. 2023 Jul 26;94:104729. doi: 10.1016/j.ebiom.2023.104729. Epub ahead of print. PMID: 37506544; PMCID: PMC10406961. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406961/ (Full text)