Beyond the acute illness: Exploring long COVID and its impact on multiple organ systems

Abstract:

Unprecedented worldwide health catastrophe due to the COVID-19 pandemic has ended up resulting in high morbidity and mortality rates. Even though many people recover from acute infection, there is rising concern regarding post-COVID-19 conditions (PCCs), often referred to as post-acute sequelae of SARS-CoV-2 infection (PASC) or “long COVID.”

The respiratory, cardiovascular, neurological, and endocrine systems are just a few of the many organ systems that can be impacted by this multifarious, complicated illness. The clinical manifestations of long COVID can vary among individuals and may include fatigue, dyspnea, chest pain, cognitive impairment, and new-onset diabetes, among others.

Although the underlying processes of long COVID are not fully understood, they probably involve unregulated immune response, persistent generation of pro-inflammatory cytokines (chronic inflammation), autoimmune-like reactions, persistent viral replication, and micro-clot formation.

To create successful treatments and care plans, it is essential to comprehend the immunological mechanisms causing these difficulties. The pathogenesis of long COVID should be clarified and potential biomarkers to help with diagnosis and treatment should be sought after. To reduce the burden of long COVID on people and healthcare systems around the world, the need for long-term monitoring and management of long COVID problems should be emphasized. It also underscores the significance of a multidisciplinary approach to patient care. The goal of this review is to carefully evaluate the clinical signs and symptoms of long COVID, their underlying causes, and any potential immunological implications.

Source: Bhattacharjee N, Sarkar P, Sarkar T. Beyond the acute illness: Exploring long COVID and its impact on multiple organ systems. Physiol Int. 2023 Nov 9. doi: 10.1556/2060.2023.00256. Epub ahead of print. PMID: 37943302. https://akjournals.com/view/journals/2060/aop/article-10.1556-2060.2023.00256/article-10.1556-2060.2023.00256.xml (Full text)

Several De-Regulated Chemokine Pathways Characterize Long COVID Syndrome

Abstract:

Introduction: The diagnosis of the Long COVID multi-organ syndrome is impeded by lack of circulating biomarkers. Hypothesis: We hypothesized, that post-COVID syndrome is associated with circulating protein de-regulation, enabling diagnosis of long COVID syndrome.

Methods: Consecutive patients (70% female, 55±8y) with long COVID syndrome (n=70, 64.3% female, 49±6y) and non-diseased, non-vaccinated healthy controls (n=23, 70% female, 55±8y) of the Vienna POSTCOV Registry (EC 1008/2021) were included, and blood samples were collected. Proteomics was performed by using the Olink proteomics technology (Olink Proteomics, Uppsala, Sweden), by using cardiovascular, Immunologic, inflammation and neurologic protein (3×96 protein) panels. Protein-protein interaction network were built by selecting the significantly dysregulated proteins from the 4 panels, and were classified into functional groups.

Results: Multiplex protein panel revealed 34 significantly de-regulated proteins as compared to controls. Gene ontology categorized the 29 upregulated proteins into several pathways with significant (false discovery rate <0.05) functional enrichment in biological processes (eg. death-inducing signaling complex assembly or positive regulation of tumor necrosis factor-mediated signaling pathway), and in molecular function (catalytic activity). Downregulated proteins were in association with chemokine-mediated signaling pathway and chemokine activity (Figure). KEGG pathway analyses revealed upregulated apoptosis, TNF- and NF-κB signaling pathways, but unchanged ACE2 receptors in patients with long COVID syndrome.

Conclusions: Several de-regulated chemokine pathways characterize long COVID syndrome and may serve as a combined biomarker panel for long COVOD diagnosis and target drug prediction.

Source: Mariann Gyongyosi, Emilie Han, Dominika Lukovic, Kevin Hamzaraj, Jutta K Bergler-Klein and Ena Hasimbegovic. Several De-Regulated Chemokine Pathways Characterize Long COVID Syndrome. Originally published 6 Nov 2023,Circulation. 2023;148:A18340 https://www.ahajournals.org/doi/abs/10.1161/circ.148.suppl_1.18340

Brain-targeted autoimmunity is strongly associated with Long COVID and its chronic fatigue syndrome as well as its affective symptoms

Abstract:

Background Autoimmune responses contribute to the pathophysiology of Long COVID, affective symptoms and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Objectives To examine whether Long COVID, and its accompanying affective symptoms and CFS are associated with immunoglobulin (Ig)A/IgM/IgG directed at neuronal proteins including myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), synapsin, α+β-tubulin, neurofilament protein (NFP), cerebellar protein-2 (CP2), and the blood-brain-barrier-brain-damage (BBD) proteins claudin-5 and S100B.

Methods IgA/IgM/IgG to the above neuronal proteins, human herpes virus-6 (HHV-6) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) were measured in 90 Long COVID patients and 90 healthy controls, while C-reactive protein (CRP), and advanced oxidation protein products (AOPP) in association with affective and CFS ratings were additionally assessed in a subgroup thereof.

Results Long COVID is associated with significant increases in IgG directed at tubulin (IgG-tubulin), MBP, MOG and synapsin; IgM-MBP, MOG, CP2, synapsin and BBD; and IgA-CP2 and synapsin. IgM-SARS-CoV-2 and IgM-HHV-6 antibody titers were significantly correlated with IgA/IgG/IgM-tubulin and -CP2, IgG/IgM-BBD, IgM-MOG, IgA/IgM-NFP, and IgG/IgM-synapsin. Binary logistic regression analysis shows that IgM-MBP and IgG-MBP are the best predictors of Long COVID. Multiple regression analysis shows that IgG-MOG, CRP and AOPP explain together 41.7% of the variance in the severity of CFS. Neural network analysis shows that IgM-synapsin, IgA-MBP, IgG-MOG, IgA-synapsin, IgA-CP2, IgG-MBP and CRP are the most important predictors of affective symptoms due to Long COVID with a predictive accuracy of r=0.801.

Conclusion Brain-targeted autoimmunity contributes significantly to the pathogenesis of Long COVID and the severity of its physio-affective phenome.

Source: Abbas F. Almulla, Michael Maes, Bo Zhou, Hussein K. Al-Hakeim, Aristo Vojdani. Brain-targeted autoimmunity is strongly associated with Long COVID and its chronic fatigue syndrome as well as its affective symptoms. medRxiv [Preprint] https://www.medrxiv.org/content/10.1101/2023.10.04.23296554v1 (Full text available as PDF file)

Blood T cell phenotypes correlate with fatigue severity in post-acute sequelae of COVID-19

Abstract:

Purpose: Post-acute sequelae of COVID-19 (PASC) affect approximately 10% of convalescent patients. The spectrum of symptoms is broad and heterogeneous with fatigue being the most often reported sequela. Easily accessible blood biomarkers to determine PASC severity are lacking. Thus, our study aimed to correlate immune phenotypes with PASC across the severity spectrum of COVID-19.

Methods: A total of 176 originally immunonaïve, convalescent COVID-19 patients from a prospective cohort during the first pandemic phase were stratified by initial disease severity and underwent clinical, psychosocial, and immune phenotyping around 10 weeks after first COVID-19 symptoms. COVID-19-associated fatigue dynamics were assessed and related to clinical and immune phenotypes.

Results: Fatigue and severe fatigue were commonly reported irrespective of initial COVID-19 severity or organ-specific PASC. A clinically relevant increase in fatigue severity after COVID-19 was detected in all groups. Neutralizing antibody titers were higher in patients with severe acute disease, but no association was found between antibody titers and PASC. While absolute peripheral blood immune cell counts in originally immunonaïve PASC patients did not differ from unexposed controls, peripheral CD3+CD4+ T cell counts were independently correlated with fatigue severity across all strata in multivariable analysis.

Conclusions: Patients were at similar risk of self-reported PASC irrespective of initial disease severity. The independent correlation between fatigue severity and blood T cell phenotypes indicates a possible role of CD4+ T cells in the pathogenesis of post-COVID-19 fatigue, which might serve as a blood biomarker.

Source: Pink, I., Hennigs, J.K., Ruhl, L. et al. Blood T cell phenotypes correlate with fatigue severity in post-acute sequelae of COVID-19. Infection (2023). https://doi.org/10.1007/s15010-023-02114-8 https://link.springer.com/article/10.1007/s15010-023-02114-8 (Full text)

First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody

Abstract:

With most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell biodistribution in humans. A 89Zr-labeled CD8-targeted minibody (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals (N = 3) and coronavirus disease 2019 (COVID-19) convalescent patients (N = 5).
Kinetic modeling results aligned with T cell–trafficking effects expected in lymphoid organs. Tissue-to-blood ratios from the first 7 hours of imaging were higher in bone marrow of COVID-19 convalescent patients compared to controls, with an increasing trend between 2 and 6 months after infection, consistent with modeled net influx rates and peripheral blood flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory.
Source: Omidvari N, Jones T, Price PM, Ferre AL, Lu J, Abdelhafez YG, Sen F, Cohen SH, Schmiedehausen K, Badawi RD, Shacklett BL, Wilson I, Cherry SR. First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody. Sci Adv. 2023 Oct 13;9(41):eadh7968. doi: 10.1126/sciadv.adh7968. Epub 2023 Oct 12. PMID: 37824612; PMCID: PMC10569706. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569706/ (Full text)

Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology

Abstract:

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks.

In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression.

Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.

Source:Aguado, J., Amarilla, A.A., Taherian Fard, A. et al. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat Aging (2023). https://doi.org/10.1038/s43587-023-00519-6 https://www.nature.com/articles/s43587-023-00519-6 (Full text)

Neurologic sequelae of COVID-19 are determined by immunologic imprinting from previous coronaviruses

Abstract:

Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the CNS, can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations and persistence of SARS-CoV-2 reservoirs.

In this prospective cohort study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common coronaviruses: 229E, HKU1, NL63 and OC43) in the serum and CSF from 112 infected individuals who developed (n = 18) or did not develop (n = 94) neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC compared with serum responses. All antibody isotypes (IgG, IgM, IgA) and subclasses (IgA1-2, IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM).

These data argue in favour of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected.

Compared to individuals who did not develop post-acute complications following infection, individuals with neuroPASC had similar demographic features (median age 65 versus 66.5 years, respectively, P = 0.55; females 33% versus 44%, P = 0.52) but exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fcγ receptors. However, surprisingly, neuroPASC individuals showed significantly expanded antibody responses to other common coronaviruses, including 229E, HKU1, NL63 and OC43.

This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an ‘original antigenic sin’ (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to the current infection, as a key prognostic marker of neuroPASC disease.

Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.

Source: Spatola M, Nziza N, Jung W, Deng Y, Yuan D, Dinoto A, Bozzetti S, Chiodega V, Ferrari S, Lauffenburger DA, Mariotto S, Alter G. Neurologic sequelae of COVID-19 are determined by immunologic imprinting from previous coronaviruses. Brain. 2023 Oct 3;146(10):4292-4305. doi: 10.1093/brain/awad155. PMID: 37161609. https://academic.oup.com/brain/article/146/10/4292/7158783 (Full text)

Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID

Abstract:

The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome.

Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes.

Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96.

Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.

Source: Wang K, Khoramjoo M, Srinivasan K, Gordon PMK, Mandal R, Jackson D, Sligl W, Grant MB, Penninger JM, Borchers CH, Wishart DS, Prasad V, Oudit GY. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep Med. 2023 Oct 18:101254. doi: 10.1016/j.xcrm.2023.101254. Epub ahead of print. PMID: 37890487. https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(23)00431-7 (Full text)

Long-term neurological implications of severe acute respiratory syndrome coronavirus 2 infections in neonates: Innate immune memory and chronic neuroinflammation

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause long-term neurological complications in adults. However, the mechanisms by which early-life SARS-CoV-2 infection increases the risk of abnormal neurodevelopment remain unknown.

Recent studies have shown an association with chronic proinflammatory cytokine/chemokine production in the central nervous system (CNS). Therefore, it was hypothesised that innate immune activation and induction of innate immune memory may play a potential role in the neonatal brain. Haematopoietic stem cells in the bone marrow are exposed to SARS-CoV-2, SARS-CoV-2 envelope protein (E protein), lipopolysaccharide (LPS)-bound spike proteins (S1 and S2 proteins), and damage-associated molecular patterns (DAMPs). Myeloid progenitors enter the stroma of the choroid plexus and are further directed to incessantly supply the brain parenchyma with resident innate immune cells. The S proteins-LPS complex can cross the blood–brain barrier and plays an important role in microglial and astrocytic inflammatory responses and innate immune memory.

Persistently activated microglia with memory release pro-inflammatory cytokines/chemokines which contribute to abnormal synaptic development in the frontal lobe and cerebellum, potentially leading to long-term neurological complications, similar to those observed in autism spectrum disorder (ASD). In addition, this hypothesis suggests that bacterial and fungal products may act as adjuvants to S proteins and may also explain why S proteins alone are insufficient to induce neuroinflammation in neonates.

Source: Tatsuro Nobutoki. Long-term neurological implications of severe acute respiratory syndrome coronavirus 2 infections in neonates: Innate immune memory and chronic neuroinflammation. Medical Hypotheses, Volume 181, December 2023, 111204 https://www.sciencedirect.com/science/article/pii/S0306987723002001 (Full text)

Long-COVID is Associated with Impaired Red Blood Cell Function

Abstract:

COVID-19 disease, caused by the severe acute respiratory syndrome virus 2 (SARS-CoV-2), induces a broad spectrum of clinical symptoms ranging from asymptomatic cases to fatal outcomes. About 10-35% of all COVID-19 patients, even those with mild COVID-19 symptoms, continue to show symptoms, i. e., fatigue, shortness of breath, cough, and cognitive dysfunction, after initial recovery.

Previously, we and others identified red blood cell precursors as a direct target of SARS-CoV-2 and suggested that SARS-CoV-2 induces dysregulation in hemoglobin- and iron-metabolism contributing to the severe systemic course of COVID-19. Here, we put particular emphasis on differences in parameters of clinical blood gas analysis and hematological parameters of more than 20 healthy and Long-COVID patients, respectively.

Long-COVID patients showed impaired oxygen binding to hemoglobin with concomitant increase in carbon monoxide binding. Hand in hand with decreased plasma iron concentration and transferrin saturation, mean corpuscular hemoglobin was elevated in Long-COVID patients compared to healthy donors suggesting a potential compensatory mechanism. Although blood pH was within the physiological range in both groups, base excess- and bicarbonate values were significantly lower in Long-COVID patients.

Furthermore, Long-COVID patients displayed reduced lymphocyte levels. The clinical relevance of these findings, e. g., as a cause of chronic immunodeficiency, remains to be investigated in future studies.

In conclusion, our data suggest impaired erythrocyte functionality in Long-COVID patients, leading to diminished oxygen supply. This in turn could be an explanation for the CFS, dyspnea and anemia. Further investigations are necessary to identify the underlying pathomechanisms.

Source: Kronstein-Wiedemann R, Tausche K, Kolditz M, Teichert M, Thiel J, Koschel D, Tonn T, Künzel SR. Long-COVID is Associated with Impaired Red Blood Cell Function. Horm Metab Res. 2023 Oct 27. doi: 10.1055/a-2186-8108. Epub ahead of print. PMID: 37890507. https://pubmed.ncbi.nlm.nih.gov/37890507/