Immunometabolic rewiring in long COVID patients with chronic headache

Abstract:

Almost 20% of patients with COVID-19 experience long-term effects, known as post-COVID condition or long COVID. Among many lingering neurologic symptoms, chronic headache is the most common. Despite this health concern, the etiology of long COVID headache is still not well characterized. Here, we present a longitudinal multi-omics analysis of blood leukocyte transcriptomics, plasma proteomics and metabolomics of long COVID patients with chronic headache. L

ong COVID patients experienced a state of hyper-inflammation prior to chronic headache onset and maintained persistent inflammatory activation throughout the progression of chronic headache. Metabolomic analysis also revealed augmented arginine and lipid metabolisms, skewing towards a nitric oxide-based pro-inflammation. Furthermore, metabolisms of neurotransmitters including serotonin, dopamine, glutamate, and GABA were markedly dysregulated during the progression of long COVID headache.

Overall, these findings illustrate the immuno-metabolomics landscape of long COVID patients with chronic headache, which may provide insights to potential therapeutic interventions.

Source: Foo SS, Chen W, Jung KL, Azamor T, Choi UY, Zhang P, Comhair SA, Erzurum SC, Jehi L, Jung JU. Immunometabolic rewiring in long COVID patients with chronic headache. bioRxiv [Preprint]. 2023 Mar 6:2023.03.06.531302. doi: 10.1101/2023.03.06.531302. PMID: 36945569; PMCID: PMC10028820. https://www.biorxiv.org/content/10.1101/2023.03.06.531302v1.full (Full text)

Autoimmunity in Long Covid and POTS

Abstract:

Orthostatic intolerance and other autonomic dysfunction syndromes are emerging as distinct symptom clusters in Long Covid. Often accompanying these are common, multi-system constitutional features such as fatigue, malaise and skin rashes which can signify generalised immune dysregulation. At the same time, multiple autoantibodies are identified in both Covid-related autonomic disorders and non-Covid autonomic disorders, implying a possible underlying autoimmune pathology. The lack of specificity of these findings precludes direct interpretations of cause and association, but prevalence with its supporting evidence is compelling.

In this review, we discuss the role of the autonomic nervous and immune systems in Covid and Long Covid and their potential influence on symptoms and clinical practice. Additionally, overlap with non-Covid autonomic dysfunction is considered. Understanding these new disorders can inform both neuro-immunology and Long Covid management.

Source: Fatema-Zahra El-Rhermoul, Artur Fedorowski, Philip Eardley, Patricia Taraborrelli, Dimitrios Panagopoulos, Richard Sutton, Phang Boon Lim, Melanie Dani, Autoimmunity in Long Covid and POTS, Oxford Open Immunology, 2023;, iqad002, https://doi.org/10.1093/oxfimm/iqad002 (Full text available as PDF file)

Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID

Abstract:

Background: COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID).

Methods: We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalization and up to 9 months of convalescence following COVID-19, respiratory syncytial virus (RSV) or influenza A (flu). Progressive fibrosing interstitial lung disease (PFILD) patients were included a positive control for severe, ongoing lung injury.

Results: Monocyte alterations in acute COVID-19 patients included aberrant expression of leucocyte migration molecules, continuing into convalescence (n=142) and corresponding to specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of chemokine receptor CXCR6 (p<0.0001) and adhesion molecule PSGL-1 (p<0.01), alongside preferential migration of monocytes towards CXCR6 ligand CXCL16 (p<0.05) which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in PFILD patients (p<0.001) confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited sustained reduction of the prostaglandin-generating enzyme COX-2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in RSV or flu convalescence.

Conclusions: Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.

Source: Scott NA, Pearmain L, Knight SB, Brand O, Morgan DJ, Jagger C, Harbach S, Khan S, Shuwa HA, Franklin M, Kästele V, Williams T, Prise I, McClure FA, Hackney P, Smith L, Menon M, Konkel JE, Lawless C, Wilson J, Mathioudakis AG, Stanel SC, Ustianowski A, Lindergard G, Brij S, Diar Bakerly N, Dark P, Brightling C, Rivera-Ortega P, Lord GM, Horsley A; CIRCO; Piper Hanley K, Felton T, Simpson A, Grainger JR, Hussell T, Mann ER. Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. Eur Respir J. 2023 Mar 15:2202226. doi: 10.1183/13993003.02226-2022. Epub ahead of print. PMID: 36922030. https://erj.ersjournals.com/content/early/2023/02/23/13993003.02226-2022 (Full article available as PDF file)

Pathogenesis Underlying Neurological Manifestations of Long COVID Syndrome and Potential Therapeutics

Abstract:

The development of long-term symptoms of coronavirus disease 2019 (COVID-19) more than four weeks after primary infection, termed “long COVID” or post-acute sequela of COVID-19 (PASC), can implicate persistent neurological complications in up to one third of patients and present as fatigue, “brain fog”, headaches, cognitive impairment, dysautonomia, neuropsychiatric symptoms, anosmia, hypogeusia, and peripheral neuropathy. Pathogenic mechanisms of these symptoms of long COVID remain largely unclear; however, several hypotheses implicate both nervous system and systemic pathogenic mechanisms such as SARS-CoV2 viral persistence and neuroinvasion, abnormal immunological response, autoimmunity, coagulopathies, and endotheliopathy.
Outside of the CNS, SARS-CoV-2 can invade the support and stem cells of the olfactory epithelium leading to persistent alterations to olfactory function. SARS-CoV-2 infection may induce abnormalities in innate and adaptive immunity including monocyte expansion, T-cell exhaustion, and prolonged cytokine release, which may cause neuroinflammatory responses and microglia activation, white matter abnormalities, and microvascular changes. Additionally, microvascular clot formation can occlude capillaries and endotheliopathy, due to SARS-CoV-2 protease activity and complement activation, can contribute to hypoxic neuronal injury and blood–brain barrier dysfunction, respectively.
Current therapeutics target pathological mechanisms by employing antivirals, decreasing inflammation, and promoting olfactory epithelium regeneration. Thus, from laboratory evidence and clinical trials in the literature, we sought to synthesize the pathophysiological pathways underlying neurological symptoms of long COVID and potential therapeutics.
Source: Leng A, Shah M, Ahmad SA, Premraj L, Wildi K, Li Bassi G, Pardo CA, Choi A, Cho S-M. Pathogenesis Underlying Neurological Manifestations of Long COVID Syndrome and Potential Therapeutics. Cells. 2023; 12(5):816. https://doi.org/10.3390/cells12050816 (Full text)

The role of immune activation and antigen persistence in acute and long COVID

Abstract:

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID.

Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation.

Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen.

This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.

Source: Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med. 2023 Mar 6:10815589231158041. doi: 10.1177/10815589231158041. Epub ahead of print. PMID: 36879504; PMCID: PMC9996119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996119/ (Full text)

Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course

Abstract:

Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes.

Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration.

Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.

Source: Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, Maida PA, Moritz J, Toscano C, Ghovehoud E, Furlan R, Barbic F, Voza A, De Nadai G, Cervia C, Zurbuchen Y, Taeschler P, Murray LA, Danelon-Sargenti G, Moro S, Gong T, Piffaretti P, Bianchini F, Crivelli V, Podešvová L, Pedotti M, Jarrossay D, Sgrignani J, Thelen S, Uhr M, Bernasconi E, Rauch A, Manzo A, Ciurea A, Rocchi MBL, Varani L, Moser B, Bottazzi B, Thelen M, Fallon BA, Boyman O, Mantovani A, Garzoni C, Franzetti-Pellanda A, Uguccioni M, Robbiani DF. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023 Mar 6. doi: 10.1038/s41590-023-01445-w. Epub ahead of print. PMID: 36879067. https://www.nature.com/articles/s41590-023-01445-w (Full text)

Long COVID: An unpredicted multisystem syndrome of COVID-19 disease

Abstract:

Long COVID is multisystem syndrome with nonspecific symptoms and organic signs of unidentified pathology occurs after COVID-19 disease. Long COVID symptoms has been documented in some cases irrespective of disease severity or hospitalization.
Long COVID symptoms has significant impact on quality of life in those cases suffered from disease in recent past and lingering to almost two years since infection. Importantly, not all cases of COVID-19 were shown long COVID symptoms. Pathophysiology resulting into long COVID manifestations is still not completely validated.
Researchers have reported ‘immune dysregulation’ and ‘coagulation abnormalities’ are probable pathophysiological mechanism for long COVID. Some of the long COVID effects shown complete reversibility including post COVID lung fibrosis. Reboot system to restore immune dysregulation and recovery in long COVID is real concern. Vaccination has not shown significant effect modifying long COVID manifestation. [Editor’s note: See conclusion in full text for a contradictory statement.]
Source: Hital Vishnu Patil, Neel Tandel and Gajanan Godhali. Long COVID: An unpredicted multisystem syndrome of COVID-19 disease. World Journal of Advanced Pharmaceutical and Life Sciences, 2023, 04(01), 005012. https://www.researchgate.net/publication/368757849_Long_COVID_An_unpredicted_multisystem_syndrome_of_COVID-19_disease (Full text)

The Role of Interferons in Long Covid Infection

Abstract:

Although the new generation of vaccines and anti-COVID-19 treatment regimens facilitated the management of acute COVID-19 infections, concerns about post-COVID-19 syndrome or Long Covid are rising. This issue can increase the incidence and morbidity of diseases such as diabetes, and cardiovascular, and lung infections, especially among patients suffering from neurodegenerative disease, cardiac arrhythmias, and ischemia.

There are numerous risk factors that cause COVID-19 patients to experience post-COVID-19 syndrome. Three potential causes attributed to this disorder include immune dysregulation, viral persistence, and autoimmunity. Interferons (IFNs) are crucial in all aspects of post-COVID-19 syndrome etiology.

In this review, we discuss the critical and double-edged role of IFNs in post-COVID-19 syndrome and how innovative biomedical approaches that target IFNs can reduce the occurrence of Long Covid infection.

Source: Karbalaeimahdi M, Farajnia S, Bargahi N, Ghadiri-Moghaddam F, Rasouli Jazi HR, Bakhtiari N, Ghasemali S, Zarghami N. The Role of Interferons in Long Covid Infection. J Interferon Cytokine Res. 2023 Feb;43(2):65-76. doi: 10.1089/jir.2022.0193. PMID: 36795973. https://pubmed.ncbi.nlm.nih.gov/36795973/

Post-COVID syndrome is associated with capillary alterations, macrophage infiltration and distinct transcriptomic signatures in skeletal muscles

Abstract:

The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also caused innumerable cases of post-infectious syndromes, colloquially referred to as “long COVID”. Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms. We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2.

Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues, but transcriptomic analysis revealed distinct gene signatures compared to the two control cohorts, indicating immune dysregulations and altered metabolic pathways.

We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain.

Source: Tom AschmanEmanuel WylerOliver BaumAndreas HentschelFranziska LeglerCorinna PreusseLil Meyer-ArndtIvana BüttnerovaAlexandra FörsterDerya CengizLuiz Gustavo Teixeira AlvesJulia SchneiderClaudia KedorRebecca RustJudith Bellmann-StroblSanchin AminaaPeter VajkoczyHans-Hilmar GoebelMarkus LandthalerVictor CormanAndreas RoosFrank L. HeppnerHelena RadbruchFriedemann PaulCarmen ScheibenbogenWerner StenzelNora F. Dengler. Post-COVID syndrome is associated with capillary alterations, macrophage infiltration and distinct transcriptomic signatures in skeletal muscles.

Inflammation-associated gut microbiome in postacute sequelae of SARS-CoV-2 points towards new therapeutic targets

We read with interest the recent report by Liu et al1 describing faecal microbiome differences with postacute sequelae of SARS-CoV-2 (PASC), commonly referred to as ‘Long-COVID’. We have previously reported elevated levels of SARS-CoV-2-specific T cells with PASC compared with resolved COVID-19 (RC; no lingering symptoms at the time of sample collection) that correlated with increased levels of the inflammatory marker IL-6, suggesting that elevated inflammation in PASC may be related to immune response to residual virus.2 Although several studies have reported gut microbiome differences during acute COVID-19,3 PASC has received less attention. We, thus, sought to characterise gut microbiome differences in PASC versus RC using faecal samples from our study2 and to relate these differences to inflammation.

The faecal microbiome was evaluated using 16S rRNA gene sequencing. Plasma levels of inflammatory markers IL-6 and C reactive protein (CRP) were measured with ELISA (see online supplemental methods). Cohort information is in table 1. IL-6 and CRP were elevated with PASC (figure 1A). Gut microbiome composition did not significantly differ between the PASC and RC cohorts (PERMANOVA; p=0.087; figure 1B), but did correlate with IL-6 and CRP levels (Adonis; IL-6 p=0.03; CRP p=0.01). IL-6 and CRP also correlated with PC1 from a principal coordinates analysis (figure 1C,D), suggesting a relationship between microbiome composition and inflammation in PASC. Using SELBAL,4 which identifies ratios or ‘Balances’ of microbes that can differentiate between groups, we found that the faecal microbiomes of individuals with PASC had a lower ratio of an amplicon sequence variant (ASV) highly related to Faecalibacterium prausnitzii over ASVs related to species in the genus Bacteroides (B. doreiB. massiliensis and B. thetaiotaomicron) (figure 1E), which provided an area under the curve (AUC) of 0.863 for differentiating individuals with PASC from RC. Balance values also negatively correlated with IL-6 (r=−0.44, p=0.01). These microbiome differences are consistent with Liu et al,1 who also reported higher levels of Bacteroides (B. vulgatus specifically) and lower F. prausnitzii with PASC. Liu et al also reported higher Ruminococcus gnavus with PASC, and lower Collinsella aerofaciens, and Blautia obeum. Interestingly, an ASV highly related to R. gnavus (100% identity over V4 read) correlated positively with IL-6 and ASVs related to F. prausnitzii (98.7% ID), C. aerofaciens (100% ID) and B. obeum (100% ID) all negatively correlated with IL-6 and/or CRP levels in our study (online supplemental table 1). Thus, our results are consistent with those of Liu et al and extend their findings by showing associations between the microbiome and markers of systemic inflammation.

Read the rest of this letter HERE.

Source: Carneiro VL, Littlefield KM, Watson R, Palmer BE, Lozupone C. Inflammation-associated gut microbiome in postacute sequelae of SARS-CoV-2 points towards new therapeutic targets. Gut. 2023 Jan 30:gutjnl-2022-328757. doi: 10.1136/gutjnl-2022-328757. Epub ahead of print. PMID: 36717218. https://gut.bmj.com/content/early/2023/01/29/gutjnl-2022-328757 (Full text)