Abstract:
Tag: long covid etiology
The role of immune activation and antigen persistence in acute and long COVID
Abstract:
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID.
Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation.
Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen.
This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Source: Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med. 2023 Mar 6:10815589231158041. doi: 10.1177/10815589231158041. Epub ahead of print. PMID: 36879504; PMCID: PMC9996119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996119/ (Full text)
The Role of Interferons in Long Covid Infection
Abstract:
Although the new generation of vaccines and anti-COVID-19 treatment regimens facilitated the management of acute COVID-19 infections, concerns about post-COVID-19 syndrome or Long Covid are rising. This issue can increase the incidence and morbidity of diseases such as diabetes, and cardiovascular, and lung infections, especially among patients suffering from neurodegenerative disease, cardiac arrhythmias, and ischemia.
There are numerous risk factors that cause COVID-19 patients to experience post-COVID-19 syndrome. Three potential causes attributed to this disorder include immune dysregulation, viral persistence, and autoimmunity. Interferons (IFNs) are crucial in all aspects of post-COVID-19 syndrome etiology.
In this review, we discuss the critical and double-edged role of IFNs in post-COVID-19 syndrome and how innovative biomedical approaches that target IFNs can reduce the occurrence of Long Covid infection.
Source: Karbalaeimahdi M, Farajnia S, Bargahi N, Ghadiri-Moghaddam F, Rasouli Jazi HR, Bakhtiari N, Ghasemali S, Zarghami N. The Role of Interferons in Long Covid Infection. J Interferon Cytokine Res. 2023 Feb;43(2):65-76. doi: 10.1089/jir.2022.0193. PMID: 36795973. https://pubmed.ncbi.nlm.nih.gov/36795973/
No Causal Effects Detected in COVID-19 and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Two Sample Mendelian Randomization Study
Abstract
T cell responses to SARS-CoV-2 in people with and without neurologic symptoms of long COVID
Abstract:
Many people experiencing long COVID syndrome, or post-acute sequelae of SARS-CoV-2 infection (PASC), suffer from debilitating neurologic symptoms (Neuro-PASC). However, whether virus-specific adaptive immunity is affected in Neuro-PASC patients remains poorly understood. We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated humoral and cellular responses toward SARS-CoV-2 Nucleocapsid protein at an average of 6 months post-infection compared to healthy COVID convalescents. Neuro-PASC patients also had enhanced virus-specific production of IL-6 from and diminished activation of CD8+ T cells.
Furthermore, the severity of cognitive deficits or quality of life disturbances in Neuro-PASC patients were associated with a reduced diversity of effector molecule expression in T cells but elevated IFN-γ production to the C-terminal domain of Nucleocapsid protein. Proteomics analysis showed enhanced plasma immunoregulatory proteins and reduced pro-inflammatory and antiviral response proteins in Neuro-PASC patients compared with healthy COVID convalescents, which were also correlated with worse neurocognitive dysfunction. These data provide new insight into the pathogenesis of long COVID syndrome and a framework for the rational design of predictive biomarkers and therapeutic interventions.
One Sentence Summary Adaptive immunity is altered in patients with neurologic manifestations of long COVID.
Source: Lavanya Visvabharathy, Barbara A. Hanson, Zachary S. Orban, Patrick H. Lim, Nicole M. Palacio, Millenia Jimenez, Jeffrey R. Clark, Edith L. Graham, Eric M. Liotta, George Tachas, Pablo Penaloza-MacMaster, Igor J. Koralnik. T cell responses to SARS-CoV-2 in people with and without neurologic symptoms of long COVID. medRxiv 2021.08.08.21261763; doi: https://doi.org/10.1101/2021.08.08.21261763 https://www.medrxiv.org/content/10.1101/2021.08.08.21261763v4.full-text (Full text)
Persistent symptoms after COVID-19 during the first wave are not associated with differential immunity to SARS-CoV-2
Abstract:
Among the unknowns in decoding the pathogenesis of SARS-CoV-2 persistent symptoms in Long Covid is whether there is a contributory role of abnormal immunity during acute infection – some have proposed that Long Covid may be a consequence of either an excessive or inadequate initial response. We analysed SARS-CoV-2 humoral and cellular immunity in healthcare workers infected during the first wave.
Symptom questionnaires allowed stratification into those with persistent symptoms and those without for comparison. During the period up to 18-weeks post-infection, we observed no difference in antibody responses to spike, RBD or nucleoprotein, virus neutralisation, or T cell responses. Also, there was no difference in the profile of antibody waning.
Analysis at 1-year, after two vaccine doses, comparing those with persistent symptoms to those without, again showed similar SARS-CoV-2 immunity. Thus, quantitative differences in SARS-CoV-2 adaptive immunity during acute infection are unlikely to contribute to Long Covid causality.
Source: Altmann D, Reynolds C, Joy G, et al. Persistent symptoms after COVID-19 during the first wave are not associated with differential immunity to SARS-CoV-2. Research Square; 2022. DOI: 10.21203/rs.3.rs-2324777/v1. https://www.researchsquare.com/article/rs-2324777/v1 (Full text)
The role of gut microbiota in etiopathogenesis of long COVID syndrome
To the editor.
COVID-19, a novel infectious disease caused by SARS-CoV-2 first emerged on November 17, 2019 had a high fatality rate and affected millions of people around the world [1]. The involvement of lung gut axis and the identification of viral RNA in feces of infected patients has drawn attention to a possible fecal-oral transmission route of SARS-CoV-2 [2].
Recent research shows a potential connection between long-term COVID-19 and dysbiosis of the gut flora. Long COVID-19 infection or post-acute COVID-19 syndrome is seen after weeks or months after the initial COVID-19 infection is characterized by complications and lingering symptoms such as fatigue, muscle weakness, and sleeplessness. Up to 3 out of 4 individuals report at least one symptom six months after recovering from COVID-19 infection, making it a relatively prevalent condition [3]. Long COVID may develop as a result of a heightened immune response, cell damage, or physiological effects of COVID-19 infection.
The gut microbiome, the billions of bacteria, fungus, and other microbes that live in the digestive tract, has been linked to COVID-19 severity and may possibly have an impact on the healing process, according to a growing body of research [4]. Researchers at the Chinese University of Hong Kong’s Center for Gut Microbiota Research discovered a clue in 2020.
When compared to healthy controls, persons with COVID-19 had unique changes in their gut microbiota, or the population of bacteria that live in their gut [5]. Early reports from Wuhan suggested that 2–10% of COVID-19 patients experienced gastrointestinal (GI) symptoms, such as diarrhoea, however a recent meta-analysis found that up to 20% of patients with COVID-19 had GI symptoms. SARS-CoV-2 virus was found in anal swabs and stool samples in over half of COVID-19 patients, suggesting that the digestive tract could be an extrapulmonary location for virus multiplication and activity [6, 7].
Read the rest of this article HERE.
Source: Kaushik P, Kumari M, Singh NK, Suri A. The role of gut microbiota in etiopathogenesis of long COVID syndrome. Horm Mol Biol Clin Investig. 2022 Nov 1. doi: 10.1515/hmbci-2022-0079. Epub ahead of print. PMID: 36317311. https://www.degruyter.com/document/doi/10.1515/hmbci-2022-0079/html (Full text)
The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells
Abstract:
Differential diagnosis and pathogenesis of the neurological signs and symptoms in COVID-19 and long-COVID syndrome
Abstract:
Neurological features have now been reported very frequently in the ongoing COVID-19 pandemic caused by SARS-CoV-2. The neurological deficits associated features are observed in both acute and chronic stages of COVID-19 and they appear to overlap with wide-ranging symptoms that can be attributed to being of non-neural origins, thus obscuring the definitive diagnosis of neuro-COVID.
The pathogenetic factors acting in concert to cause neuronal injury are now emerging, with SARS-CoV-2 directly affecting the brain coupled with the neuroinflammatory factors have been implicated in the causation of disabilities in acute COVID-19 and patients with Long-COVID syndrome. As the differentiation between a neural origin and other organ-based causation of a particular neurological feature is of prognostic significance, it implores a course of action to this covert, yet important neurological challenge.
Source: Baig AM. Differential diagnosis and pathogenesis of the neurological signs and symptoms in COVID-19 and long-COVID syndrome. CNS Neurosci Ther. 2022 Sep 19. doi: 10.1111/cns.13957. Epub ahead of print. PMID: 36117492. https://onlinelibrary.wiley.com/doi/10.1111/cns.13957 (Full text)
Long Covid: where we stand and challenges ahead
Abstract:
Post-acute sequelae of SARS-CoV-2 (PASC), also known as Post-Covid Syndrome, and colloquially as Long Covid, has been defined as a constellation of signs and symptoms which persist for weeks or months after the initial SARS-CoV-2 infection. PASC affects a wide range of diverse organs and systems, with manifestations involving lungs, brain, the cardiovascular system and other organs such as kidney and the neuromuscular system. The pathogenesis of PASC is complex and multifactorial. Evidence suggests that seeding and persistence of SARS-CoV-2 in different organs, reactivation, and response to unrelated viruses such as EBV, autoimmunity, and uncontrolled inflammation are major drivers of PASC. The relative importance of pathogenetic pathways may differ in different tissue and organ contexts. Evidence suggests that vaccination, in addition to protecting against disease, reduces PASC after breakthrough infection although its actual impact remains to be defined. PASC represents a formidable challenge for health care systems and dissecting pathogenetic mechanisms may pave the way to targeted preventive and therapeutic approaches.
Source: Mantovani, A., Morrone, M.C., Patrono, C. et al. Long Covid: where we stand and challenges ahead. Cell Death Differ (2022). https://doi.org/10.1038/s41418-022-01052-6 https://www.nature.com/articles/s41418-022-01052-6 (Full text)