People With Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Exhibit Similarly Impaired Vascular Function

Abstract:

Background: This study aimed to compare flow-mediated dilation values between individuals with Long COVID, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), and healthy age-matched controls to assess the potential implications for clinical management and long-term health outcomes.

Methods: A case-case-control approach was employed, and flow-mediated dilation measurements were obtained from 51 participants (17 Long COVID patients, 17 ME/CFS patients, and 17 healthy age-matched controls). Flow-mediated dilation values were analysed using one-way ANOVA for between-group comparisons.

Results: Results revealed significantly impaired endothelial function in both Long COVID and ME/CFS groups compared to healthy age-matched controls as determined by maximum % brachial artery diameter post-occlusion compared to pre-occlusion resting diameter (6.99 ± 4.33% and 6.60 ± 3.48% vs. 11.30 ± 4.44%, respectively, both p < 0.05). Notably, there was no difference in flow-mediated dilation between Long COVID and ME/CFS groups (p = 0.949), despite significantly longer illness duration in the ME/CFS group (ME/CFS: 16 ± 11.15 years vs. Long COVID: 1.36 ± 0.51 years, p < 0.0001).

Conclusion: The study demonstrates that both Long COVID and ME/CFS patients exhibit similarly impaired endothelial function, indicating potential vascular involvement in the pathogenesis of these post-viral illnesses. The significant reduction in flow-mediated dilation values suggests an increased cardiovascular risk in these populations, warranting careful monitoring and the development of targeted interventions to improve endothelial function and mitigate long-term health implications.

Source: Marie Mclaughlin Ph.D , Nilihan E.M. Sanal-Hayes Ph.D ,Lawrence D. Hayes Ph.D , Ethan C. Berry BSc , Nicholas F. Sculthorpe Ph.D , People WithLong COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Exhibit Similarly Impaired Vascular Function, The American Journal of Medicine (2023). https://www.amjmed.com/article/S0002-9343(23)00609-5/fulltext (Full text)

Autonomic dysregulation in long-term patients suffering from Post-COVID-19 Syndrome assessed by heart rate variability

Abstract:

Post-COVID-19 Syndrome (PCS) is a condition with multiple symptoms partly related to dysregulation of the autonomic nerve system. Assessment of heart rate variability (HRV) using 24 h Holter-ECG may serve as a surrogate to characterize cardiac autonomic activity. A prospective study including 103 PCS patients (time after infection = 252 days, age = 49.0 ± 11.3 years, 45.7% women) was performed and patients underwent detailed clinical screening, cardiopulmonary exercise testing, and 24 h Holter monitoring.

Data of PCS patients was compared to 103 CAD patients and a healthy control group (n = 90). After correction for age and sex, frequency-related variables differed in PCS patients compared to controls including LF/HFpower, LF/HFnu, and LF/HF ratio (24 h; p ≤ 0.001). By contrast, these variables were largely comparable between PCS and CAD patients, while sympathetic activation was highest in PCS patients during the 24 h period.

Overall, PCS patients showed disturbed diurnal adjustment of HRV, with impaired parasympathetic activity at night. Patients hospitalized during acute infection showed an even more pronounced overactivation of sympathetic activity compared to patients who underwent ambulant care.

Our data demonstrate persistent HRV alterations in PCS patients with long-term symptom duration, suggesting a sustained impairment of sympathovagal balance. Moreover, sympathetic overstimulation and diminished parasympathetic response in long-term PCS patients are comparable to findings in CAD patients. Whether HRV variables have a prognostic value in PCS and/or might serve as biomarkers indicating a successful interventional approach warrants further longitudinal studies.

Source: Mooren FC, Böckelmann I, Waranski M, Kotewitsch M, Teschler M, Schäfer H, Schmitz B. Autonomic dysregulation in long-term patients suffering from Post-COVID-19 Syndrome assessed by heart rate variability. Sci Rep. 2023 Sep 22;13(1):15814. doi: 10.1038/s41598-023-42615-y. PMID: 37739977; PMCID: PMC10516975. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516975/ (Full text)

Incidence of immune-mediated inflammatory diseases following COVID-19: a matched cohort study in UK primary care

Abstract:

Background: Some patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) go on to experience post-COVID-19 condition or long COVID. Preliminary findings have given rise to the theory that long COVID may be due in part to a deranged immune response. In this study, we assess whether there is an association between SARS-CoV-2 infection and the incidence of immune-mediated inflammatory diseases (IMIDs).

Methods: Matched cohort study using primary care electronic health record data from the Clinical Practice Research Datalink Aurum database. The exposed cohort included 458,147 adults aged 18 years and older with a confirmed SARS-CoV-2 infection and no prior diagnosis of IMIDs. They were matched on age, sex, and general practice to 1,818,929 adults with no diagnosis of confirmed or suspected SARS-CoV-2 infection. The primary outcome was a composite of any of the following IMIDs: autoimmune thyroiditis, coeliac disease, inflammatory bowel disease (IBD), myasthenia gravis, pernicious anaemia, psoriasis, rheumatoid arthritis (RA), Sjogren’s syndrome, systemic lupus erythematosus (SLE), type 1 diabetes mellitus (T1DM), and vitiligo. The secondary outcomes were each of these conditions separately. Cox proportional hazard models were used to estimate adjusted hazard ratios (aHR) and 95% confidence intervals (CI) for the primary and secondary outcomes, adjusting for age, sex, ethnic group, smoking status, body mass index, relevant infections, and medications.

Results: Six hundred and nighty six (0.15%) and 2230 (0.12%) patients in the exposed and unexposed cohort developed an IMID during the follow-up period over 0.29 person-years, giving a crude incidence rate of 4.59 and 3.65 per 1000 person-years, respectively. Patients in the exposed cohort had a 22% increased risk of developing an IMID, compared to the unexposed cohort (aHR 1.22, 95% CI 1.12 to 1.33). The incidence of three IMIDs was significantly associated with SARS-CoV-2 infection. These were T1DM (aHR 1.56, 1.09 to 2.23), IBD (aHR 1.36, 1.18 to 1.56), and psoriasis (1.23, 1.05 to 1.42).

Conclusions: SARS-CoV-2 was associated with an increased incidence of IMIDs including T1DM, IBD and psoriasis. However, these findings could be potentially due to ascertainment bias. Further research is needed to replicate these findings in other populations and to measure autoantibody profiles in cohorts of individuals with COVID-19.

Source: Syed U, Subramanian A, Wraith DC, Lord JM, McGee K, Ghokale K, Nirantharakumar K, Haroon S. Incidence of immune-mediated inflammatory diseases following COVID-19: a matched cohort study in UK primary care. BMC Med. 2023 Sep 21;21(1):363. doi: 10.1186/s12916-023-03049-5. PMID: 37735654; PMCID: PMC10512476. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512476/ (Full text)

Long COVID: A Molecular, Cellular and Histopathology Overview

Abstract:

Long COVID has been studied as different sequelae that some individuals can develop after the acute phase of the disease. Persistent symptoms such as dry cough, fatigue, and dyspnea can remain after six months of COVID-19 cure. Others such as lung fibrosis, kidney injury, and thrombotic risk also are observed. Here, a deep review of each human organ and system infected by the virus was performed aiming to show how molecules expression and cell signaling can induce the organism cure or injuries and, subsequently sequelae. The review also suggests the importance of public health surveillance for these cases including a more comprehensive analysis of molecular biology tools that can clarify and assist in the prognosis, treatment, and preventive methods for potentially more serious disorders in post-COVID-19 patients.

Source: da Silva Barros, B. , de Oliveira Cruz, L. , de Sousa, G. , Souza-Silva, G. , de Lima, M. , Oliveira, E. , Silva, A. , Macêdo, L. , Leal, L. , Marcos, B. , Elsztein, C. , Invenção, M. , de Freitas, A. and Moutinho-Melo, C. (2023) Long COVID: A Molecular, Cellular and Histopathology Overview. Journal of Biosciences and Medicines11, 90-113. doi: 10.4236/jbm.2023.119009. https://www.scirp.org/journal/paperinformation.aspx?paperid=127523 (Full text)

Unveiling the Mysteries of Long COVID Syndrome: Exploring the Distinct Tissue and Organ Pathologies Linked to Prolonged COVID-19 Symptoms

Abstract:

The ongoing battle against the coronavirus disease 2019 (COVID-19) pandemic has encountered a complex aspect with the emergence of long COVID syndrome. There has been a growing prevalence of COVID-19-affected individuals experiencing persistent and diverse symptoms that extend beyond the initial infection phase. The phenomenon known as long COVID syndrome raises significant questions about the underlying mechanisms driving these enduring symptoms.

This comprehensive analysis explores the complex domain of long COVID syndrome with a view to shed light on the specific tissue and organ pathologies contributing to its intricate nature. This review aims to analyze the various clinical manifestations of this condition across different bodily systems and explore potential mechanisms such as viral persistence, immune dysregulation, autoimmunity, and molecular mimicry. The goal is to gain a better understanding of the intricate network of pathologies contributing to long COVID syndrome.

Understanding these distinct pathological indicators provides valuable insights into comprehending the complexities of long COVID and presents opportunities for developing more accurate diagnostic and therapeutic strategies, thereby improving the quality of patient care by effectively  addressing the ever-changing medical challenge in a more focused manner.

Source: Sapna F, Deepa F, Sakshi F, et al. (September 02, 2023) Unveiling the Mysteries of Long COVID Syndrome: Exploring the Distinct Tissue and Organ Pathologies Linked to Prolonged COVID-19 Symptoms. Cureus 15(9): e44588. DOI 10.7759/cureus.44588. https://assets.cureus.com/uploads/review_article/pdf/182615/20230903-23556-1g56qsl.pdf (Full text)

Cardiovascular risk factors predict who should have echocardiographic evaluation in long COVID

Abstract:

Background: The need for echocardiograms among patients with long COVID is debatable. Our aim was to evaluate the prevalence of left ventricular (LV) dysfunction and identify predictors.
Methods: We conducted a cross-sectional study and included all consecutive patients enrolled in our post-COVID clinic. We included patients who had an echocardiogram and had no previous known heart disease. We defined LV dysfunction as a low ejection fraction or grade II to grade III diastolic dysfunction on an echocardiogram with evidence of elevated filling pressures. We calculated the prevalence of heart disease and predictors of heart disease using logistic regression.
Results: We included 217 post-COVID patients enrolled in the clinic. The prevalence of LV dysfunction is 24%;95% CI 18-30. Predictors of heart disease include older age and a previous history of hypertension and diabetes or having a intermediate or high ASCVD score. Patients with low ASCVD score did not have low ejection fraction on the screening echocardiograms.
Conclusion: Our study found a considerable number of patients with LV dysfunction. Older patients with cardiovascular risk factors are at risk of long COVID associated heart disease.
Source: Leonardo Tamariz, Mathew Ryan, George Marzouka R, et al. Cardiovascular risk factors predict who should have echocardiographic evaluation in long COVID. Authorea. August 23, 2023. https://www.authorea.com/doi/full/10.22541/au.169277562.22633945 (Full text available as download)

SARS-CoV-2 Reinfections and Long COVID in the Post-Omicron Phase of the Pandemic

Abstract:

We are reviewing the current state of knowledge on the virological and immunological correlates of long COVID, focusing on recent evidence for the possible association between the increasing number of SARS-CoV-2 reinfections and the parallel pandemic of long COVID. The severity of reinfections largely depends on the severity of the initial episode; in turn, this is determined both by a combination of genetic factors, particularly related to the innate immune response, and by the pathogenicity of the specific variant, especially its ability to infect and induce syncytia formation at the lower respiratory tract.

The cumulative risk of long COVID as well as of various cardiac, pulmonary, or neurological complications increases proportionally to the number of SARS-CoV-2 infections, primarily in the elderly. Therefore, the number of long COVID cases is expected to remain high in the future. Reinfections apparently increase the likelihood of long COVID, but less so if they are mild or asymptomatic as in children and adolescents.

Strategies to prevent SARS-CoV-2 reinfections are urgently needed, primarily among older adults who have a higher burden of comorbidities. Follow-up studies using an established case definition and precise diagnostic criteria of long COVID in people with or without reinfection may further elucidate the contribution of SARS-CoV-2 reinfections to the long COVID burden.

Although accumulating evidence supports vaccination, both before and after the SARS-CoV-2 infection, as a preventive strategy to reduce the risk of long COVID, more robust comparative observational studies, including randomized trials, are needed to provide conclusive evidence of the effectiveness of vaccination in preventing or mitigating long COVID in all age groups. Thankfully, answers not only on the prevention, but also on treatment options and rates of recovery from long COVID are gradually starting to emerge.

Source: Boufidou F, Medić S, Lampropoulou V, Siafakas N, Tsakris A, Anastassopoulou C. SARS-CoV-2 Reinfections and Long COVID in the Post-Omicron Phase of the Pandemic. Int J Mol Sci. 2023 Aug 19;24(16):12962. doi: 10.3390/ijms241612962. PMID: 37629143; PMCID: PMC10454552. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454552/ (Full text)

Long COVID Complicated by Fatal Cytomegalovirus and Aspergillus Infection of the Lungs: An Autopsy Case Report

Abstract:

After the acute phase of COVID-19, some patients develop long COVID. This term is used for a variety of conditions with a complex, yet not fully elucidated etiology, likely including the prolonged persistence of the virus in the organism and progression to lung fibrosis. We present a unique autopsy case of a patient with severe COVID-19 with prolonged viral persistence who developed interstitial lung fibrosis complicated by a fatal combination of cytomegalovirus and Aspergillus infection. SARS-CoV-2 virus was detected at autopsy in the lungs more than two months after the acute infection, although tests from the nasopharynx were negative.
Immune dysregulation after COVID-19 and the administration of corticoid therapy created favorable conditions for the cytomegalovirus and Aspergillus infection that were uncovered at autopsy. These pathogens may represent a risk for opportunistic infections, complicating not only the acute coronavirus infection but also long COVID, as was documented in the presented case.
Source:Krivosikova L, Kuracinova T, Martanovic P, Hyblova M, Kaluzay J, Uhrinova A, Janega P, Babal P. Long COVID Complicated by Fatal Cytomegalovirus and Aspergillus Infection of the Lungs: An Autopsy Case Report. Viruses. 2023; 15(9):1810. https://doi.org/10.3390/v15091810 https://www.mdpi.com/1999-4915/15/9/1810 (Full text)

Pathophysiology, diagnosis, and management of neuroinflammation in covid-19

Abstract:

Although neurological complications of SARS-CoV-2 infection are relatively rare, their potential long term morbidity and mortality have a significant impact, given the large numbers of infected patients. Covid-19 is now in the differential diagnosis of a number of common neurological syndromes including encephalopathy, encephalitis, acute demyelinating encephalomyelitis, stroke, and Guillain-Barré syndrome.

Physicians should be aware of the pathophysiology underlying these presentations to diagnose and treat patients rapidly and appropriately. Although good evidence has been found for neurovirulence, the neuroinvasive and neurotropic potential of SARS-CoV-2 is limited. The pathophysiology of most complications is immune mediated and vascular, or both. A significant proportion of patients have developed long covid, which can include neuropsychiatric presentations. The mechanisms of long covid remain unclear. The longer term consequences of infection with covid-19 on the brain, particularly in terms of neurodegeneration, will only become apparent with time and long term follow-up.

Source: Brown R LBenjamin LLunn M PBharucha TZandi M SHoskote C et al. Pathophysiology, diagnosis, and management of neuroinflammation in covid-19 doi:10.1136/bmj-2022-073923 https://www.bmj.com/content/382/bmj-2022-073923.abstract (Full text available as PDF file)

Evaluation of Post–COVID-19 Cognitive Dysfunction: Recommendations for Researchers

Opinion:

SARS-CoV-2 infection is associated with increased rates of postillness cognitive dysfunction, colloquially referred to as “brain fog,”1 that may portend significant consequences for patient functioning and quality of life. Post–COVID-19 cognitive dysfunction is 1 of approximately 200 symptoms of post–COVID-19 condition (PCC), defined by the World Health Organization as developing within 3 months of an initial SARS-CoV-2 infection, lasting at least 2 months, and cannot be explained by an alternative diagnosis. A pooled analysis of 54 studies and 1.2 million individuals found that 3.2% of patients’ self-reported cognitive problems 3 months after symptomatic infection,1 while other studies have shown objective evidence of cognitive dysfunction in approximately 24% of patients nearly 1 year later.2 Accumulating evidence also supports the hypothesis that COVID-19 may increase risk for later neurodegeneration3 and exacerbate preexisting cognitive dysfunction.4 As one of the most common symptoms of PCC and one for which affected individuals may seek accommodations and disability benefits in accordance with the Americans With Disabilities Act, it is imperative that we use more rigorous studies of cognitive outcomes. Accordingly, the following recommendations have been generated by members of the NeuroCOVID International Neuropsychology Taskforce based on initial guidelines.5

Source: Jaqueline H. Becker, PhD; Tracy D. Vannorsdall, PhD; Sara L. Weisenbach, PhD. JAMA Psychiatry. Published online August 16, 2023. doi:10.1001/jamapsychiatry.2023.2820 https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2808155